
I. Review of Object Oriented Programming

A. Brief Review & Example
Concept/Program Realization

Class - description Object - actual "thing" created "outside" the class

public class Coin Coin penny1; // declaration
{ penny = new Coin(); // instantiation
 public int value;

public Coin()

 {
...

 }
...
}

Diagram (Universal Modeling Language-UML)

object name (variable name) penny1
object reference (unnamed box)

Class name (Type) Coin

fields -int value=

constructor(s) +Coin()
& methods

B. Sequence of a Program & Introduction to IDE's

 |------------ runtime / logic errors -------|
 | |-syntax errors--| |
 | | | |

Programmer -----> Source Code -------> Byte Code ---------> Java VM --------> Output
 (typing) | (compile) | (interpret) | (hardware |
 | | | runs) |
 filename.java filename.class in JRE program, monitor,

(human readable) (computer readable) browser, plug-in, speaker,
or custom network, et

C. Full example

1. Class Definition
public class Coin
{
 // private class fields (variables)

private int value;
 private String name;

 // default constructor
 public Coin()
 {
 value = 0;
 name = "";
 }

 // constructor with two parameters
 public Coin(int v, String n)
 {
 value = v;
 name = n;
 }

 // accessor method (to access one field)
 public int getValue()
 {
 return value;
 }

 // mutator method (to change one field)
 public void setValue(int v)
 {
 value = v;
 }

} // Coin

2. Class Usage
public class UseACoin
{
 // class field variable
 private Coin penny1; // declaration
 private Coin dime1 = new Coin(10,"Dime"); // declaration and instantiation

 // application (no need a default constructor)
 public static void main(String a[])
 {
 penny1 = new Coin(); // constructor call to instantiate a new coin
 penny1.setValue(1); // method call with 1 argument
 System.out.println(dime1.getValue()); // call to inherited (automatically) System class
 }
} // UseACoin

Notes:

a) Syntactically correct but poor choice of class name UsaACoin --- should be UseCoin or TestCoin
b) System.out.println(dime1.getValue()); will not work as expected -- must convert int to String by
 System.out.println("" + dime1.getValue()); --- details make all the difference in the world at this level!!

3. UML
 penny1 dime

 Coin Coin

 -int value= 0 -int value= 10
 -String name= "" -String name = "dime"

 +Coin() // same
 +Coin(int, String)

 +int getValue()
 +void setValue(int)

Notes
 a) The "-" means private, the "+" means public

4. Commenting

a) Three Java Commenting Options

(1) single line commenting

- Syntax: // ...anything you need to say
- Result: Anything after // is ignored by compiler to end of line
- Usage:

o if used after statement, then explains usage/purpose of that statement
o if used on its own line, then explains next few statements or code segment
o if used on its own line, then put blank line above comment line

(2) multi-line commenting
- Syntax: /* ... anything you need to say on

 multiple lines...
 */

- Result: Everything between /* and */ is ignored by compiler
- Usage:

o To explain complex segment of code that takes up more than one line
o One its own lines, directly above code it explains
o One or two blank lines above opening /*

(3) documentation commenting (JavaDoc utility)
- Syntax: /** ... anything you need to say for use

 as "standard" code documentation...
 */

- Result: Everything between /** and */ is ignored by compiler
- Usage:

o To explain feature of code for use in standard documentation (JavaDoc)
 Classes
 Methods (except main method)
 Fields

o One its own lines, directly above code it explains
o One or two blank lines above opening /**
o May contain special tags that start with the @ character...explained later
o javadoc utility creates standard HTML documentation from these comments

5. Review Usage of TextPad and Introduction to SunOne Studio (Community Edition)

a) Show program, compile, run, & javaDoc using TextPad

b) Show program, compile, run, & javaDoc using SunOne Studio

c) Expectations for Programs to Be Turned In
- Hardcopy (printout) of each class unless specified otherwise. Each class must

start on its one page unless multiple classes (complete files) can fit on a single
page. New Currier font, 10 pt, no italics, no bold

- Appropriate and consistent commenting and indenting
- Be prepared to demonstrate to Mr. M. your program (submitted version) on the

teacher's station

D. Common Errors & Mistakes (stupid programmer tricks)

1. Compiler / Syntax Errors
- breaking the "grammar" rules, easy to fix as compiler tells you
- common examples:

i. forgetting a semicolon (this is not the same as adding extra semicolons!!)
ii. misspelled words
iii. incorrect case (capitalization)

2. Runtime Errors
- unhandled exception
- usually due to not checking all possible values -- defensive programming
- results in a crash of program
- common examples

i. nullPointer exception -- object declared but never initialized or instantiated
ii. divide by zero
iii. forgetting to initialize a variable either in constructor or at declaration

3. Logic Errors
- you didn't think carefully enough -- you assumed you KNEW the answer
- may cause crash (hopefully) or just plain wrong answer/result
- most dangerous and difficult to track down
- usually can't prove correct unless using exhaustive testing or mathematical proof
- common examples

i. off-by-one error -- especially using arrays since start at subscript 0
ii. incorrect formula -- Area = 2.0 * Math.PI * radius
iii. incorrect variable usage (worse yet, Area = 2 * Math.PI * radius)
iv. roundoff errors - fundamental limits of data storage

4. Avoiding Errors
- Syntax Errors

• Know Java syntax!
• Use style conventions (indenting, commenting, variable names, etc)!!

- Runtime Errors
• Know OOP concepts!!!
• Passing argument variables to parameter variables in method calls!!!
• Habits!!! (always initialize all variables, know Class types, know instantiations)

- Logic Errors

• Plan FIRST!!!!... 10 years of education and fast food has taught you to "get working
right away and get it over with"...this will be your downfall. Be prepared for 6 weeks
of boredom and lecture notes.

• Know defensive programming!!!!
o assume you are WRONG
o Use easy, known test data to check your BASIC understanding of problem
o Test "boundary" conditions...be paranoid!!!!

• Know debugging techniques!!!!
o Pinpoint -- determine which methods your program is running and in what order

(don't just assume)
o Snapshot -- determine variable/object values at various times
o Use either System.out.println() or IDE debugger

II. Digital Computer Hardware and Basic Concepts

A. Diagrams

1. Block Diagram
 external - Hard Drive
 memory - CD, DVD, etc.

 input CPU output - monitor
 device -"brain" device - printer

- keyboard internal - RAM
 - mouse memory - cache

2. Schematic Diagram

B. Abstraction versus Realization
Data Abstraction Terms (coding/meaning) Realization (measurable)

1. bit ("0" or "1", "off" or "on") switches (CD's: no pit = 0, pit =1) --> used in memory, storage
2. 1 byte = 8 bits = 256 "states" or values
3. 1 kilobyte (KB) = 1024 bytes (sometimes shortened to 1000 bytes)
4. 1 megabyte (MB) = 1024 KB (sometimes shortened to 1000 KB)
5. 1 gigabyte (GB) = 1024 MB ...
6. 1 terabyte (TB) = 1024 GB = 8796093022240 bits

Action Abstraction Concepts/Tems Realization (measurable)

1. 1 hertz (Hz) Clock speed 1 "flip" per second ... flip may be 1 bit or numerous bits together
2. 1 kiloHertz (KHz) = 1000 Hz Note: our vision is "updated" at 30 Hz... anything less will
3. 1 megaHertz (1MHz) = 1,000,000 Hz "flicker". However our eyes are sensitive to GHz... we
4. 1 gigaHertz (1GHz) = 1 billion flips per second perceive differences in this range as shades of color.

Basically, computers now use "multiple" clocks that are synchronized to one "master" clock. This allows for
optimization and efficiency depending on requirements of hardware. Example is "sleep mode" for laptops where the
CPU may slow its clock(s) to save energy/battery.

III. Basic Terminology & Concepts in OOP

A. Divide & Conquer

1. Break overall problem down into small, manageable tasks

2. Allows for multiple programmers to solve one problem

B. Encapsulation -- each object knows about itself and is separate from other objects

1. Each object "knows"

a) what it IS -- fields

b) what it can DO -- methods

c) how to interact --

(1) data hiding = private

(2) interface = public

C. Generality -- also known as "can be applied to a lot of situations or problems"

1. A Class is a Type of problem -- it solves a general problem (i.e. the quadratic function solves a type
of problem (equations of the form ax^2 + bx + c = 0)

2. An object is a specific instance of a problem -- 2x^2 -3x +6 = 0 is an instance of a quadratic
equation

D. Extensibility - the ability to add or include features easily

1. Two kinds of relationships:

a) inheritance

(1) also know as a "is a" relation. A PokerDealer "is a" PokerPlayer. Therefore class PokerDealer
extends PokerPlayer

(2) allows for a "hierarchy" to organize classes into useful categories. ex. animal classification system,
JFC

(3) extended classes

(a) inherit all the abilities (fields & methods) of the "super" or ancestor classes

(b) may overload ancestor methods (polymorphism)

(c) may write additional methods and/or fields as needed

b) association -

(1) also known as a "has a" relation. A PokerGame "has a" Deck. Therefore, we can create or
instantiate as many objects from a class to use as needed.

(2) used for "code reuse"--why reinvent a program when we can just "use it?"

2. a Class can be extended or specialized to answer a more detailed question/problem --
class PokerApplet extends Applet can do everything an Applet can (i.e. internet access) but
does something more specific in that it can play poker over the internet

3. a Class can implement some other programmer's "agreed-upon" class where the other programmer
describes what needs to be written but not how to do it.
-- class Poker ... implements ActionListener forces the Poker programmer to write a method
called actionPerformed(ActionEvent e) {} but doesn't say how or what to write inside it.

E. Abstraction -- The Overarching Principle of Above Concepts

1. "What makes a human different than a computer"

2. Discovering the essential features (nouns & verbs) of a class (fields & methods) in order to solve a
question/problem. This may entail several "layers" of abstraction (i.e. multiple related classes) and is
best learned through experience (i.e. failure many times)

IV. Java Syntax

A. Data Types

byte (1)

short

int (4)

long (8)

integer

float (4)

double (8)

Real char (2)

numeric boolean

primitive types
(# of bytes predefined)

Your Classes

Java Foundation Classes String

Object

Classes Interface Arrays

reference types
(dynamic memory allocation)

Data Types

B. Variables

1. 2 Types

a) field variables belong to the class

b) local variables belong to a scope within a method

2. Syntax
[final] Type variableName [= initializer];

 where

a) [...] is optional

b) Type is one of the Data Types above

c) variableName is chosen by the Programmer and must:

(1) consist only of digits, letters, and underscores

(2) must begin with a letter or underscore

(3) case sensitive

(4) has a scope -- it exists from point of declaration to nearest end of block i.e { ... }

(a) a final variable must be initialized only once at point of declaration (which makes it a
definition)

(5) will be graded according to style:

(a) all letters lowercase

(b) except:

(i) final variables are all capitalized (also known as "constants")

(ii) the first letter of words following first word in variableName must be capitalized

(c) meaning or purpose in program

3. examples:
- int n; // declaration only
- double x = 0; // declaration & initialization (definition)

- String harry = "Harry Handsome";

// object declaration & instantiation with assignment/initialization to String
literal

- Rectangle box = new Rectangle(5,10,20,30);

// object declaration & instantiation (definition) using a constructor with
4 integer arguments passed by value to 4 integer parameters

- int [] perfectSquares = {1,4,9,16,25};

// array reference/object declared & instantiated (automatically/implicitly to
size 5) and initialized with 5 integer values by "block initializer".

- final int MAXRANGE = 100; // constant
- final float _EPSILON = 0.0001;

// constant (the starting underscore implies it is a "system" variable)

4. local variables vs. class fields -- scope and qualifiers

a) Definition & Usage

(1) a local variable is for temporary use in a method and therefore cannot be accessed outside its scope

(2) fields are variables defined in the class (outside of all methods)

(3) the scope of a variable is the region (usually denoted by {...}) of a program in which the variable
can be referred to by its variableName.

(4) to access a field outside of its scope (i.e. class), it must be qualified (using dot notation). Assuming
the field is either public or protected (not private)

(5) within its scope (i.e. within its class) a field has an implicit qualifier, namely this (ex.
this.penny1)

b) Notes

(1) It is a syntax error to have 2 identical local variables within the same scope or overlapping scopes

(2) variableNames should NOT be distinguished by case alone!

(3) duplicate fields & local variableNames:

(a) can overlap scopes

(b) cannot be both declared inside same scope -- why not?...ans: fields are class scope, locals
are method scope

(c) this is called "shadowing"... which can be useful but very dangerous if not done carefully!!
If you intend to do this, be prepared to explain why.

(4) it is a syntax error to have two duplicate field variableNames within one class scope.

c) Examples
public class Test
{
 private int x; // field variable,

// scope is the Test class,
// has implicit Test class qualifier this.x

 public Test (int x) // local variable (aka parameter -- has method scope)
 {
 int x; // illegal as same scope as parameter

 String y; // local variable object, method scope

 int y; // illegal, already declared local variable y

 for (int i=1; i<x; i++) // ok, using local variable x, not field x
 {
 y = "hello"; // ok, just using local variable y
 }
 }

 public Test() // default constructor
 {
 int x = 5; // local variable x defined, shadows field x (hides the field)
 // different scope the above constructor

 x = x + 1; // OK since just modifying local variable

 x = x++; // OK but what will x be after this?
// i.e. don't mix unary & binary expressions

 this.x = x; // OK, private field x is being set equal to local variable x

 }
} // class Test

C. Expressions

1. Dfn: An expression is one of the following:

a) a literal (string or character or numeric) -- i.e. "this is a string literal", 'z', 23.0

b) a variable (local or field--perhaps qualified)

c) a method call (i.e. that returns a value or reference to an object)

d) combination of subExpressions acted on by operators

2. Examples:

a) '5' // a character literal

b) x // variable (type unknown)

c) Math.sin(x) // method call (specifically a static class method)

d) x + Math.sin(x) // two subexpressions acted upon by the +
operator (Note: both subexpressions must be of compatible types)

e) x++ // a variable acted upon by the ++ operator

f) x == y // 2 variables acted upon by the == operator
(returns a boolean value)

g) x == y && (z>0 || w<0) // 4 variables, 5 operators

h) p.x // a variable, specifically a "qualified field
variable", q is the "name of the object" or "reference to the object" or
"name of the instance" and x is the class field

i) v[i] // variable, specifically an array element
where v is the array, i is the index

j) e.getSalary() // method call of an instance/object named e.

3. Operators

a) Three types of operators

(1) unary -- acts upon only 1 variable

(a) prefix -- operation is done before all other operators

(i) ++x, --x, -x, +x (Note: +x is same as x, -x is the negation of x if it exists)

(b) postfix - operation is done after all other operators are finished

(i) x++, x--

(c) other

(i) . Access class feature ("qualifier operator")

(ii) [] Array subscript

(iii) () method call

(iv) ! boolean NOT

(v) ~ bitwise not

(vi) (TypeName) Cast to another (super) class

(vii) new Object allocation/instantiation

(2) binary -- works on two expressions

(a) * multiplication

(b) / division or integer division

(c) % integer remainder (modulus)

(d) + addition

(e) - subtraction

(f) << shift left

(g) >> arithmetic shift right

(h) >>> bitwise shift right

(i) < less than

(j) <= less than or equal to

(k) > greater than

(l) >= greater than or equal to

(m) == equal to

(n) != not equal to

(o) instance of tests whether an object's type is a given type
or subtype thereof

(p) & bitwise and

(q) ^ bitwise exclusive or

(r) | bitwise or

(s) && bitwise "short circuit" and (also called a
"logical and")

(t) || bitwise "short circuit" or (also called a
"logical or")

(u) = assignment

(v) op= assignment with binary operator (op is one of +,-,*,/,%,&,|,^,<<,>>,>>>)

(3) ternary -- operates on 3expressions, Java has only 1 and is only rarely used

(a) testExpression ? expression1 : expression2

(b) same as:
if (testExpression == true)

return expression1
else
 return expression2

b) Precedence -- normal math precedence with () as precedence override

c) Notes

(1) most operators are left-associated

(a) ex. x - y + z is same as (x - y) + z which is the same as mathematics

(2) exceptions (which are right-associated) are

(a) unary prefix and others -- examples include +x, -y, ++x, --x, !x, ~x, (int)x, new X()

(b) assignment and op= (ex. x = y = Math.sin(j) is same as x = (y = Math.sin(j))

see page 123 in Big Java for exercises.

D. Class Declaration

1. Syntax of Class declarations
[public | private] [abstract | final] class ClassName [extends SuperClassName] [implements InterfaceName1,
InterfaceName2, ...]
{
 feature1;
 feature2;
...
}

where

feature is either:
1) a declaration of the form:

modifiers field | constructor | method | inner class
or

2) an initialization block of the form:
[static] { body }

2. Notes on Class declarations

a) the underlined items were introduced in Honors Java Programming course but not always defined or
explained

b) the [...] is optional syntax

c) the | means "exclusive or" (i.e. either choose one or the other but not both options)

d) abstract, final, extends, implements, inner class and static will be discussed
later.

e) modifiers are: (may choose one of public, private, or protected along with either one or
both of static and final)

(1) public -- make this feature available to all other classes

(2) private -- make this feature only available to this class

(3) protected -- make this feature only available to this class, subclasses (descendents) and classes in
same package (directory). Note: protected is not used in this course and is of limited value

(4) static -- defined for this class, not for each instance of the class. (i.e. every object of this class has
the exact same--1 and only 1--feature)

(5) final -- (same as a constant) has the following three properties:

(a) a field that cannot be changed once it is initialized at the point of declaration

(b) a method that can't be overridden by another subclass (i.e. defeats polymorphism)

(c) a class that can't be extended (i.e. no subclasses)

3. field declarations

a) Syntax: [modifiers] Type variableName [= initializer];

b) 2 types of fields

(1) instance fields -- each object has its own copy of the field

(2) static fields -- only 1 per-class copy. Also known as "class fields"

(a) Note1: static fields are useful for "sharing" common information between all instances of a
class

(b) Note2: This breaks "encapsulation." So, to avoid accidental changes, use as static
final. Therefore it can be set only once by original programmer

(c) Note3: static variableNames use, by convention, all capital letters

(d) Note 4: there are three ways to initialize static fields:

(i) do nothing ... default values will be supplied by JVM... poor programming and
will be major loss of points!!!

What are default values for int, long, float, double, char, boolean, byte, short???

(ii) explicitly at point of declaration/definition :
i.e. public static final double PI = 3.141592;

(iii) static initialization block: (not used in this course)
public class Test
{

private static int X; // field X is static

public Test() // constructor
{
...
}
...
static { X = 0;} // static initialization block for field X can be anywhere.
...

}

4. constructor declaration

a) Syntax

(1) syntax for declaring a constructor

[modifiers] ClassName ([Type parameter1, Type parameter2, ...]) [throws ExceptionType1, ExceptionType2, ...]
{

body
}

(2) syntax for calling a constructor (or using the constructor from another class). AKA "invoking" or
"instantiating"

new ClassName ([argument1, argument2, ...]);

b) Comments

(1) throws is used for "error handling" and will be discussed later

(2) when invoking a constructor, the arguments and parameters must match in:

(a) compatible Type (i.e. the same Type or can be "cast" to the same Type)

(b) same number of parameters as arguments

(c) same order of parameters and arguments

(3) when an object (instance) is constructed, the following actions take place:

(a) all fields are given default values

(i) 0 for numbers

(ii) false for booleans

(iii) null for reference/object fields)

(b) initializers & initializer blocks are executed in the order in which they appear

(c) body of constructor is executed/run

(4) when a class is loaded into the JVM the following actions take place:

(a) all static fields are initialized with default values

(b) initializers and initializer blocks are executed in the order in which they appear

(5) one constructor can call another constructor in the same class by the invocation:

(a) this ([argument1, argument2, ...]);

(b) However, the invocation must be on the first line of the body of the calling constructor.

(c) Example:
private Coin(int v) // no one can use this constructor directly
{
 value = v;
}

public Coin (int v, String n) // second constructor which can be used by others
{
 this(v); // calls the above constructor, value now equals v (note: on first line)
 name = n;
}

(6) one constructor may call the constructor of the "parent" or "super" class (that the current class
extends) by the invocation:

(a) super ([argument1, argument2, ...]);

(b) However, the invocation must be on the first line of the body of the calling constructor

c) Special references (i.e. Specialized Java Classes)

(1) arrays

(a) Syntax:
new ArrayType [= {initializer1, initializer2, ... }];

(b) example:
new int [] = {1,4,5, 16, 25};

(i) Note1: this is an "anonymous" array...no variable name is attached

(ii) Note2: the "int []" is part of the ArrayType whereas the "[= { ...}]" is optional

(2) String class

(a) Construction
String name1 = "Rob"; // one String object referring to a literal constant

// string "Rob", this is an implied constructor invocation
// unique in Java

String name2 = "R" + "o" + "b"; // one String object constructed from 3 anonymous objects

String name3 = new String("Rob"); // String reference to a new String object constructed to

// contain a literal constant string "Rob", this is a
// same constructor call as for name1

String name4 = name3; // name4 is a new reference to the exact same object

// as name3

(b) Notes

(i) All Strings are immutable -- once instantiated & initialized, a String object can
never be changed. However it can be copied. In other words, after instantiation, there
are only "accessor" methods but no "mutator" methods.

(ii) Do NOT compare Strings using ==. This leads to numerous problems as the "=="
operator is meant for primitive Types.

(iii) Example:

(a) if (name1 == name2) // returns false

(b) if (name3 == name4) // returns true

(iv) Why?

(v) to compare String objects use the equals() method for each String object i.e.
if (name1.equals(name2)) // returns true since

// equals() method compares
// contents, not references

(vi) This warning holds true for comparison of any object. Ergo == operator compares
if the references are the same, not contents.

(vii) In order to compare contents of the objects (i.e. field values the same), must use
the equals() method.

(viii) However, comparison of contents is a complex topic and will be addressed
only if we have enough time

(ix) Finally, the empty String "" is not the same as the null String
String name1;
String name2="";
if (name1 == null) // returns true
if (name2 == "") // return true but dangerous! why?
if (name2 == null) // returns false;

(a) the "" is a valid String object (i.e. a size 0 String)

(b) the null String means that a String variable has been declared but not
instantiated or referenced properly (i.e. nullPointerException error)

5. method declaration

a) Syntax

modifiers ReturnType methodName ([[final] ParameterType parameter1,
[final] ParameterType parameter2, ...]

)
 [throws ExceptionType1,

 ExceptionType2, ...]
{
 body
}

where

(1) ReturnType is any Java Type or void (i.e. no return value)

(2) modifiers are: (may choose one of public, private, or protected along with either one
or more of static, final, and abstract)

(a) public -- make this method available to all other classes

(b) private -- make this method only available to this class

(c) protected -- make this method only available to this class, subclasses (descendents) and
classes in same package (directory). Note: protected is not used in this course

(d) static -- defined for this class, not for each instance of the class. (i.e. every object of this
class has the exact same--1 and only 1--method).

(i) also known as "class methods" as opposed to "instance methods" since the method
belongs to the class as a whole

(ii) Example: Math.sqrt(x) // x must be either a static field or literal value

(iii) Note1: static methods can only affect static fields (not instance fields) and static
parameters (cannot use the implicit instance qualifier "this")

(iv) Note2: the historical choice of term "static" is poor...as it implies that it cannot be
changed, which is not true...it can change fields but they also must be "static"

(e) final -- has the following properties:

(i) the method cannot be overridden, (i.e. not overloaded or extended) by any
subclass method (i.e. another programmer cannot "hide" your method behind his/her
own method of the same signature)

(a) Dfn: a "method signature" consists of the methodName, parameterTypes,
and parameter order but not the returnType, modifiers, or ExceptionTypes.

(ii) defeats polymorphism and therefore, in general, should be avoided

(iii) Example:

(a) public final boolean generatePassword()
{
 ...
}

(b) the programmer did not want another programmer to be able
to write a different generatePassword() method that might be
used to generate "poor" passwords...prevent hacking

(f) abstract -- has the following properties

(i) forces another programmer to extend the method (and class)

(ii) has no method body (i.e. not even {...})

(iii) any class with any abstract methods cannot be instantiated (since an object won't
know how to execute a non-existent method body). Therefore abstract methods (&
classes) can only be extended

(iv) Example:
public abstract class BankAccount
{

private String password = "";

public abstract String createPassword() // another programmer must supply the body

}

public class SavingsAccount extends BankAccount
{
 // note: at this point we have access to password via qualifier "super.password"

 private String password = ""; // note this "overrides" BankAccount's password
 // but still can distinguish by using
 // this.password (instance field) or super.password

 public SavingsAccount()
 {
 super(); // invoke BankAccount's constructor (not shown)
 }

 public String createPassword() // forced implementation of abstract BankAccount method
 {
 password = "secret"; // using this.password (not super.password)
 return password;
 }
}

(3) throws and ExceptionTypes will be discussed later

b) Notes

(1) Generic method declaration is not covered in this class...only Generic method call/invocationU...see
later lecture.

(2) if ReturnType (other than void) is specified, then the return statement must:

(a) be "guaranteed" to be executable (otherwise a compiler warning)

(b) include an expression whose Type is "compatible" with ReturnType

(c) the method exits as soon as the return statement is encountered.

(3) do NOT put final and abstract in same class since:

(a) abstract implies the class must be extended

(b) final implies the class cannot be extended

(4) [final] ParameterType parameter

(a) ** Numerous common mistakes!!!

(b) ** Explanation: All arguments from calling (invoking) method are passed to the
corresponding parameter by value (i.e. the value of the argument is copied into a new memory
location for use as a parameter)

(i) for primitives, cannot change argument via the parameter (i.e. can't change
"backward")

(ii) for references (objects), cannot change original argument reference but can change
original argument reference (object) fields via mutator methods (i.e. setXXX()) and
public fields & methods (i.e. normal class interfaces)

(c) Examples:
Example 1:

calling program/method
public class Test
{

public static void main(String a[])
{

 // local variables (not fields)
 static int x = 1;
 static Coin penny1 = new Coin();
 ...
 penny1.setValue(x); // invoking method with argument x

}
}

invoked program/method

public Class Coin
{
 private int value = 0; // field variable
 ...
 public void setValue(int y) // parameter y (local variable, method scope)
 {
 value = y; // same as this.value = y;
 }

Example 2: (note: primitive variables not shown)

calling program/method
public class Test
{

public static void main(String a[])
{

 Pocket p; // holds up to 2 Coins
1) p = new Pocket(); // create a new pocket
 Coin penny,dime; // two coins
2) penny = new Coin(1); // the penny object has value 1
3) dime = new Coin(10); // the dime object has value 10

...
4) p.setCoin1(penny); // put a penny into the pocket's first coin
5) penny = null;
6) p.setCoin2(dime); // put a dime into the pocket's 2nd coin

...
}

}

called program/method
public class Pocket
{
 private Coin coin1 = null; // first coin in pocket
 private Coin coin2 = null;
 ...
4) public void setCoin1(Coin cn)
 {
4a) cn.setValue(3);
4b) coin1 = cn; // same as this.coin1 = cn
4c) coin1.setValue(2);
 coin1 = penny; // syntax error (Pocket doesn't know about penny variable)
 coin1 = coin2; // Ok, but dangerous as both slots refer to same coin
 coin1 = cn; // Ok, corrected above problems
 cn = null; // OK since don't need parameter reference anymore
 }
 ...
6 public void setCoin2(final Coin CN)
 {
6a) CN.setValue(5); // OK but dangerous as just changed the value of dime
6b) coin2 = CN; // same as this.coin2 = dime
6c) coin2.setValue(7); // OK but dangerous as just changed the value of dime
 coin2 = coin1; // OK but now the dime is a penny;
 coin2 = CN; // back to dime and coin2 having value 5
 CN = null; // illegal as CN can't reference anything other than dime
 }
}

public class Coin
{
 private int value;
 ...
 public boolean setValue(int x) // the boolean return value can be ignored by
 { // calling program (i.e. Pocket & Test classes)
 value = x; // same as this.value = x
 return true; // required since returning a boolean
 }
}

Note1: penny & dime are argument references. cn and CN are corresponding parameter references.
Note2: penny1, cn, and coin1 references are copies (i.e. they point to same place or address). But the object itself is
NOT copied. (Think of MS Windows shortcuts--1 file but multiple icons that can access the file)

6. Interface declaration & usage

a) Syntax for declaration
[public] interface IntefaceName [extends InterfaceName1, InterfaceName2, ..]
{
 feature1;
 feature2;
 …
}

where:

1. each feature has the form:
a. modifiers method | field

i. modifiers are public, static, and/or final
ii. modifiers are never necessary because:

1. methods are always public
2. fields are always public static final

iii. method declaration has the form:
1. Type methodName (parameter1, parameter2,…);

iv. Field declaration has the form:
1. Type variableName = initializer;

b) Example
public interface Measurable
{
 double CM_PER_INCH = 2.54; // assume public static final

 int getMeasure(); // assume public
}

c) Notes

(1) Interfaces can be thought of as “Abstract classes on steroids”

(2) Interfaces are “agreed upon” set of method signatures that will be implemented by the individual
programmers.

(3) Converting from Class to Interface is legal (and automatic) as long as the Class implements the
Interface….”upcasting is automatic”

(4) Casting or converting from an Interface to a Class is legal (but not automatic) as long as the Class
implements the Interface and the programmer KNOWS the object is of the desired class. “downcasting
must be down explicitly and carefully”

(5) See API List Interface – a List is a Collection of items where the items have a position. (i.e arrays,
ArrayLists, LinkedLists, etc.)

d) Implementing an Interface
public class InchRuler implements Measurable
{
 private int length_in_inches;

 public int getMeasure() // cont forget to make public
 {
 return length_in_inches * CM_PER_INCH;
 }
}

e) Using and casting interfaces and classes

public class Test
{
 InchRuler ruler = new InchRuler(12); // a 12-inch ruler
 Measurable x = ruler; // ruler can be “upcasted” to Measurable
 …println(x.getMeasure()); // ok
 …println(x.getUnit()); // illegal, can only use getMeasure()

 InchRuler ruler2 = (InchRuler) x; // OK, since KNOW x is an InchRuler
 InchRuler ruler3 = (FootRuler) x; // illegal unless FootRuler extends InchRuler

 Measurable y = new Measurable(); // illegal (can’t instantiate interace)
}

7. Generics Lecture (Java5—jre1.5)

Why:
 Generics solves a long-standing problem in Java when a project has multiple
ogrammers over a long period of time. pr

Example:
 When storing items (objects) in an array or ArrayList or any other JFC data structures
(Maps, Lists, etc), the data is stored as type “Object”. However, other Java programmers may
not know what Type you have really stored. As long as YOU know what you are storing and
retrieving, then you can be safe when you CAST your data. However, if you are the one
responsible for storing but another programmer somewhere else is in charge of retrieving your
data, then you have a problem. How does the other programmer know what to cast?

Example using the pre-Java5 way:

// This method tries to remove a “4” from an ArrayList called “c”.
public void expurgate(ArrayList c) //we don’t know what is in “c”
{
 for (int i = 0; i<c.size(); i++)
 if (((???) c.get(i) == 4) //what should the programmer cast be?
 i.set(i, null); //programmer must guess the Type
}

Example using the Java5 Generics (aka parameterized Types):
// This method removes 4-letter words from a ArrayList called “c”
public void expurgate(ArrayList<String> c) // forcing programmer to use Strings
{ // which will be checked by Compiler
 Iterator<String> i = c.iterator(); // Iterators are also using Strings
 while (i.hasNext()) // (lecture on Iterators is later)
 if (i.next().length() == 4) // Automatic casting to String
 i.remove();
}

Notes:
1. When you see the code <Type>, read it as “of Type”; the declaration reads as “ArrayList of String c.”
2. The main advantages are:

a. Declarations take longer to code but using the variables takes less typing.
b. Using generics makes code clearer and safer, since compiler checks rather than runtime exception
c. We have eliminated an unsafe cast and a number of extra parentheses
d. We have moved part of the specification of the method from a comment to its signature, so the

compiler can verify at compile time that the type constraints are not violated at run time.
e. If the program compiles without warnings, we can state with certainty that it will not throw a

ClassCastException at run time.
f. The net effect of using generics, especially in large programs, is improved readability and robustness.

3. The main disadvantage are:
a. It makes a bit more programming. We must add <String> to our declarations.
b. Parameter type information is not available at run time,
c. Automatically generated casts may fail when interoperating with ill-behaved legacy (old) code

Examples for Using Generics (we won’t cover Declaring/Designing Generic classes in APCS)

old way (legacy) new Generic way

private ArrayList animals; private ArrayList<Animal> animals;
private Map environment; private Map<Location, Animal> environment;

E. Statements – Java comes with the following statements

1. Declarations – already covered in previous section

a) Constant – public static final int PI = 3.14159267;

b) Variables

c) Class

d) Interface

e) Methods

f) Parameters

2. Expression / Assignments

a) Use of = or other expression (unary, binary, or ternary) followed by a semicolon

3. Flow Control

a) Default is Sequential execution – one line after another

b) Conditional

(1) If statement
if (boolean expression) {...}

(2) If…else statement
if (boolean expression)

{...}
else
 {...}

(3) Switch statement – not tested on AP exam or this course
switch (integet expression)
{

case intValue1: statement;
case intValue2: statement;
...
default: statement;

}

c) Return statement
return primitiveValue or reference;

d) Throw statement – abruptly terminates current method and resumes control to closest (scope-wise)
catch block

throws expression;
// expression must evaluate to reference to object of class Throwable

e) Break statement
break; // exits out of local block

f) Continue statement
continue; // skips to end of block

4. Loop / iteration (initialize Loop Control Variable, test LCV, update LCV) ****

a) For loop
for (init LCV; test LCV; update LCV) {...}

b) While loop
init LCV;
while (test LCV)
{

 ...;
 update LCV;
}

c) Do…while loop – not used on AP test or this course
init LCV;
do
{

update LCV;
 ...;

}
while (test LCV);

d) Iterator (interface) – demonstrated later

e) Enhanced For-Loop (Java5—jre1.5) (aka “for each”)
Why:
 There are times when the “for loop” and “while loop” are more complex than needed,
especially for JFC Collections (ArrayLists, Maps, Sets, etc.)

The pre-Java5 “For” looping: Java5 “For Each” looping:

// using LCV // looping over primitive arrays
int values[] =; int values[] = ...; // array declaration
int sum; int sum; // total of elements
for (int i=0; i<values.length; i++) for (int i : values) // no more explicit
 sume += value; sum += value; // LCV initialize, test,
 // or updating.

// iterators // looping over Collections and using generics
Set names = ...; Set<String> names = ...;
Iterator i = names.Iterator(); for (String n : names)
while (i.hasNext()) System.out.println(n);
 System.out.println((String)i.next());

Notes:

1. Code is easier to read (once you get used to it) and you wont need to scan the loop for index errors

2. Good for “simple” and “common” looping constructs (i.e. may be given on the APCS exam but you won’t
have to write in your free response part)

3. Don’t use if need to do complex or unusual situations (i.e. traversing an array in reverse order).

5. Method calls

a) Direct calls

b) Recursion or sefl-referencing (often unstable and results in infinite loop)

c) Calls using Generics

6. Other statements

a) Block statement (using {…}). Implies another level of scoping rules

b) Import

c) Package

d) Try blocks (i.e. Exception handling) – not test on AP Exam or in class

F. Special Topics

1. Exception Handling (to deal with runtime errors to avoid system crashes)

a) Checked – must be “caught”

b) Unchecked

c) Example
try
{
 // statements that might cause a crash
}
catch (ExceptionType e)
{
 // handling of possible problem
 System.out.printl(“error: “+e)
}

d) Common Exceptions to be known for AP exam
NullPointerException; // object not instantiated
ArrayIndexOutOfBoundsException; //
ArithmeticException; // divide by zero
ClassCastException; // wrong class for downcasting
IllegalArgumentException; // wrong argument for method call
IllegalStateException; // JRE not ready (network error)
NoSuchElementException; // iterator error

2. Event Handling – implementing ActionListener interface (i.e. actionPerformed(ActionEvent e)
method)

3. Graphics

a) AWT – original graphics, OS dependant (use of Panel, Button, TextField, etc.)

b) Swing – newer graphics, less OS dependant, “lightweight” (use of JPanel, JButton, etc.)

c) User Interfaces

(1) Components – Jbuttons, JTextFields, etc

(2) Containers – Jframes, JPanels, etc. (not Containers extend Components and therefore “are
components”)

(3) Layouts – GridBagLayout, FlowLayout, etc.

4. Class hierarchy – inheritance (extending)

a) Overloading – same method name but different signatures, can be determined at compile time

b) Overridding – same method signature as parent class, may be determined at runtime

c) Polymorphism – the ability to decide at runtime which method is to be used based upon the object's
class at runtime. Also related to casting between levels within the hierarchy. (see getClass() method of
Object class)

5. Threads – not on AP test… useful for animation and multiple programs

