
I. Algorithms

A. Intro to Analysis - Big-Oh
Basically, algorithm analysis is the amount of time any program or algorithm should be expected to take for any
given size of input. It is based on the number of elements, n, that must be "processed". For example, in order to
Bubble sort an array of 10 elements, the algorithm (bubble sort) must "scan through" all 10 elements and put the
largest at the end. This takes at least 10 "calculations". This process must be repeated for 10 times (bubbling up each
biggest number). Therefore there is a at least a total of 10 * 10 = 100 "calculations" to be done. If the array is 100
elements, it would take 100*100 = 10000 calculations. If there are n elements, it would take n2 calculations. This is
"Big-Oh" of the Bubble Sort algorithm, written O(n) = n2.

Common Big-Oh functions for various algorithms are:
a) O(n) = c, O(1) constant (Algorithm: finding the nth element of an array takes only 1 calculation)
b) O(n) = log (n) logarithmic (Algorithm: searching using the binary search)
c) O(n) = n linear (Algorithm: searching through each element of an array)
d) O(n) = n * log (n) N log N (Algorithm: sorting using quicksort)
e) O(n) = n2 quadratic (Algorithm: Bubble sort)
f) O(n) = n3 cubic
g) O(n) = 2n exponential (worst = very slow)

 examples of cubic, quadratic, NlogN, linear, logarithmic, and constant

 cubic quadratic NlogN

[time]

 linear

 [n] --> logrithmic and constant

1. Rules for calculating Big-Oh
a. Coefficients and constants are not needed.

a. O(n) = 3n+5 should just be O(n) = n
b. Throw away any "lower order terms"

a. O(n) = n3 + n2 should just be O(n) = n3
c. Always assume n is large enough to be bigger than any constant

a. if one algorithm takes 10000 calculations (O(n) = c) and another algorithm
is O(n) = n, we can assume the 2nd algorithm is "slower" because we will
assume n is much larger than 10000.

d. for Loops tend to generate O(n) = n but while loops are more tricky
a. nested for loops (i.e. loop within loop) will multiply O(n)'s
b. nested statements will multiply O(n) with outer statement's O(n)
c. consecutive loops do not multiply, they add. Therefore, O(n) is equal to the

larger of the two loop's O(n).

e. any time we "cut in half" the size of the array or data structure, the Big-Oh tends to
be logarithmic i.e. O(n) = log(n)

f. Big-Oh is an approximation and tends to be "worst-case" scenario which may not
happen that often in actual use. It is useful for "large n" only.

For a true understanding of what this implies consider this table

 n Log2(n) n Log2(n) n2 n3 2n

 ---- ------ -------- ---- ---- ----
 1 0 1 1 1 2
 2 1 2 4 8 4
 4 2 8 16 64 16
 8 3 24 64 512 256
 16 4 64 256 4096 65536
 32 5 160 1024 32768 2147483648

 256 8 2048 65536 16777216 Oh My Gosh

 1 million 20 20 Million 1 Trillion 1 Trillion Millions Forget It

ex. linear searrch binary search quicksort bubble sort weather simulartions population simulations

 Notes

1) The Oh My Gosh would take approximately 12 weeks on a current machine .

 2) For 1 Million member array -
 The Bubble sort would take 50,000 times as long as the Quicksort .

B. Counter
for (int j = 0; j < 100; j++)
 System.out.println(j); Analysis: O(n) = n

C. Accumulation
int sum = 0;
for (int j = 0; j < 100; j++)

 sum += j; // sum = 0+1+2+3+...+99+100
 Analysis: O(n) = n

D. Swap Analysis: O(n) = c

1. simple - local variables, local scope
int temp = x;
x = y;
y = temp;

2. method on field variables
public void swap()
{

int temp = this.x;
 this.x = this.y;
 this.y = temp;

}

3. method call to swap local variables - naive attempt...won't work
public void localSwap()
{

int x = 5, y = 6; // local variables
swap2(x,y); // works??? ...not possible

}

4. swap method on primitive array
public void swap(int a[], int index1, int index2)
{

int temp = a[index1];
a[index1] = a[index2];
a[index2] = temp;

}

5. swap method on ArrayList (or List)
public void swap(List a, int index1, int index2)
{

Object temp = a.getAt(index1);
a.set(index1, a.getAt(index2));
a.set(index2, temp);

}

E. Search

1. Linear Search - no assumptions other than can check for equality [== or equals()]

a) Approach
Start at the beginning and check each element one by one to see if the target is an
element of the array

b) Algorithm
for (j = 0 to j < length of the array, j++)
 if (target == a[j]) then found target and return
after loop is done -- haven't found target so return false

c) Code
public boolean searchPrimitiveArray(int [] a, int target)
{

for (int j = 0; j < a.length; j++)
 if a[j] == target then return true;

return false;
 }

public boolean searchObjectArray(ArrayList a, Object target)
{

for (int j = 0; j < a.size(); j++)
 if a.getAt(j).equals(target) then return true;

return false;
 }

d) Analysis: each takes one loop through each element of the array so O(n) = n

2. Binary Search - assume the data structure is sorted in ascending order

a) diagram
leftIndex middleIndex rightIndex

0 1 2 3 4 5 6 7 8 9

-3 -1 5 7 22 27 80 101 120 130 a) target = 27
b) target = 6

b) Approach
1. find middle element of array.
2. if middle element is target, then return true
3. if target is not at middle then it may be in either first half of array or 2nd half of array

3a. if in first half, then "cut" array into the "lower half" and repeat steps 1 - 3 on
only lower half
3b. if in 2nd half, then "cut" array into "upper half" and repeat steps 1 - 3 on only
upper half

c) Algorithm
1. need leftIndex, rightIndex, and middleIndex
2. while ((haven't found target) && (not finished cutting array in half))

2a. if (middle element == target) return true
2b. if (target < middle element) then move rightIndex down to middle
2c. else move leftIndex up to middle
2d. recalculate middleIndex

 Issues:
 1. need to keep track of whether target is found boolean found = false
 2. how to calculate middleIndex ... middle = first + last / 2 !!!! logic error
 middle = (first + last) / 2
 3. Boundary Conditions:

a. how to know when we are done cutting array in half? (target not in
array) ---> when leftIndex > rightIndex
b. why don't we want to move leftIndex up to middleIndex????
 ---> leftIndex = middleIndex + 1 // so don't have an infinite loop

d) Code
public boolean binarySearchPrimitives(int [] a, int target)
{
 int left = 0, right = a.length, middle = (left+right)/2;
 boolean found = false;

while ((!found) && (left <= right))
{
 if (a[middle] == target)
 found = true; // or return true ????
 else
 if (target < a[middle])
 right = middle - 1;
 else
 left = middle + 1;
 middle = (left + right) / 2;
}
return found;

}

e) Analysis Running Total
1 statement 1 1
1 statement 1 2
loop (if not found, cut array in half) ---> log2(n) !!!! 2+ log2(n)
 1/2 if statement 0.5
 1 statement 1 2+0.5log2(n)
 1/2 else 0.5
 1 if statement .5
 1 statement
 1 else statement .5
 1 statement 2+(1)log2(n)
 1 statement 1 2+(2)log2(n)
1 statement 1 3+(2)log2(n)

 O(n) = log2(n)

WHY log2(n) !!!!

Example: suppose n = 16, the important question becomes
“how many times will the body of loop be executed?”

If n = 16, then we may need to divide it into two “halves” repeatedly

0 15
1st level

0 7
2nd level

0 3
3rd level

0 1
4th level

1. The number of levels will determine how many times the

loop body must be executed.
2. 2# of levels = 24 = 16 = n
3. solving for the “# of levels” by taking log2 of both sides

gives:

log2 (2# of levels) = # of levels = log2 (16) = log2 (n)

What would happen if we could divide the array into 3rds rather than halves?
Answer: the log would be base 3 rather than base 2 (i.e. log3)

F. Divisibility (modulus)

1. Greatest Common Factors of two integers, x and y.

a) Approach -- try out on actual numbers. Let x = 54 and y = 24 GCF = ??? (6)
1. Start with a one of the numbers (24) and test to see if it is a divisor of BOTH numbers. If it is, then done
2. Else check next number smaller (23) and test to see if it is divisor of BOTH numbers. If it is, then done
3. Repeat process until down to 1 (which must be a divisor of both numbers)

b) Algorithm
for (int j = x; j > 1; j--)

if (j is divisor of x) and (j is divisor of y) then return j
return 1;

 Issues:
 1. how do we tell if "j is divisor of x"? ---> (x % j) == 0

c) Code
public int greatestCommonFactor (int x, int y)
{ for (int j = x; j > 1; j--)
 if ((x%j)==0) && ((y%j == 0)) return j;

return 1;
 }

d) Analysis
one for loop that goes from n down to 1. Therefore O(n) = n

2. Least Common Multiple of two integers, x and y.

a) Approach -- try out on actual numbers. Let x = 54 and y = 24 LCM = ??? (216 = 2x2x2x3x3x3)
1. start with one of the numbers
2. generate and check every multiple to see if y is a divisor of the multiple.

b) Algorithm

1. int possibleLCM = x;
 2. loop until done
 2a. if (possibleLCM % y = = 0) then return possibleLCM
 2b. update possibleLCM;

Issues:
 1. when are we "done"? ---> when possibleLCM => x*y

2. how do we update possibleLCM? - --> possibleLCM += x;
3. what kind of loop (for or while)? ---> while is more flexible

c) Code
public int leastCommonMultiple (int x, int y)
{

int possibleLCM = x;
while (possibleLCM < x * y)

 {
 if ((possibleLCM%y) == 0) return j;
 possibleLCM += x;
}
return x*y;

 }

d) Analysis
one while loop whose worst case is x*y or n*m or n*n --> O(n) = n2
 best case is O(n) = 1 (find the LCM right away)

G. Sorts (assume the data structures are “comparable”)
Purpose: Most computers are used for sorting and searching for data.
Examples: Phone book, databases for credit card records, scheduling, SSN & tax forms?
Big Problem: The Internet suffers from a lack of comprehensive way to sort and search through all the
data in a "reasonable amount of time" -- Big-Oh analysis. XML might help in this regard. Does
Google do a good job????

1. Selection Sort

a) diagram

scan through to find largest (15 at index 2)
 0 1 2 3 4 5 6
 7 15 -2 6 3 15 11
swap
 0 1 2 3 4 5 6
 7 11 -2 6 3 15 15

scan through on shortened array (15 at index 5)
swap with itself
 0 1 2 3 4 5 6
 7 11 -2 6 3 15 15

scan through on shortened array (11 at index 1)
 0 1 2 3 4 5 6
 7 3 -2 6 11 15 15
swap

scan through on shortened array (7 at index 0)
 0 1 2 3 4 5 6
 6 3 -2 7 11 15 15
swap

scan through on shortened array (6 at index 0)
 0 1 2 3 4 5 6
 -2 3 6 7 11 15 15
swap

b) Approach
1. Scan through entire array and select the largest element.
2. Put this element in last slot and "shorten" array by one element
3. Repeat step 1 on "shortened" array.

c) Algorithm

{Precondition: We have a List/Array of "comparable" objects called "A[]" of size "n"}
{Postcondition: The entire List/Array is sorted in "ascending" order}

1. Do steps a & b for endOfArray = n - 1 down to 1 // shorten the array each pass
a. Scan through "shortened" array and record the largest element, maxi and its location, maxIndex.
b. Swap maxi and last element of shortened array (i.e. A[maxIndex] and A[endOfArray]

d) Code

public boolean selectionSort(Comparable A[])
{

for (int endOfArray = A.size(); endOfArray > 0; endOfArray--)
{
 int max = A[0]; // start max at first element
 int maxIndex = 0;
 for (int i = 0; i < endOfArray; i++)
 if (A[i] > max) {max = A[i]; maxIndex = i}
 swap(A,maxIndex,endOfArray);
}

}

e) Analysis
Ignoring the "individual" statements (O(n) = c). We can focus on the loops.
Two loops: outer loop is O(n) = n and inner loop is O(n) = n/2 (on average)
Since nested, multiply to get O(n) = n(n/2) = n2

2. Insertion Sort

a) General Method –
Like putting cards in order
i.e. assuming all the cards already picked are in order, pick up next card, determine where it fits in,
insert it
 new item to be inserted

b) Example
 0 1 2 3 4 5 6
A -8 0 5 17 -2 21 4 ...

 in order (move over) pos
 move each over 4

 insert where it belongs

a) diagram

 0 1 2 3 4 5 6
 10 17 3 5 -2 16 3

arraysize = 1
 10

arraysize = 2
 10 17 move 17 into place

arraysize = 3
 3 10 17 move 3 into place

arraysize = 4
 3 5 10 17 move 5 into place

arraysize = 5
 -2 3 5 10 17 move -2 into place

arraysize = 6
 -2 3 5 10 16 17 move 16 into place

arraysize = 7
 -2 3 3 5 10 16 17 move 3 into place

b) Approach
1. Assume the first element in array is sorted.
2. Add each element by assuming the previous elements are sorted.

a. When adding the next element, it will be at the "end" of the partially sorted array.
b. temporarily store this next element. Move consecutive prior elements to the right until the "next element" can be inserted

into its "proper spot"
3. Repeat step 2 until all the elements have been "inserted" into their correct order.

c) Algorithm

 {Precondition: We have a List/Array of "comparable" objects called "A[]" of size "n"}
 {Postcondition: The entire List/Array is sorted in "ascending" order}

1. for currentSorted = 1 to n // scan through the entire array to insert each element
a. Set nextElement = A[currentSorted]
b. compareIndex = currentSorted - 1
c. while (compareIndex > 0 && A[compareIndex] > nextElement)

i. A[compareIndex] = A[compareIndex-1] // move each "bigger" element to the right
ii. decrease compareIndex by one

d. insert nextElement into A[compareIndex]

for (Pos = 1; Pos < Nbrterms, Pos++) // for each item to be inserted
 {
 Temp = A[Pos]; // hold new number temporarily
 J = Pos – 1; // look at the # right before it
 while (J >= 0 && (A[J] > Temp)) // while # not in right slot
 {
 A[J+1] = A[J]; // copy # in slot to right
 J--; // move down array
 }
 A[J+1] = Temp; // put new # in correct slot
 }

d) Code
public boolean insertionSort(Comparable A[])
{

for (int currentSorted = 1; currentSorted < A.size(); currentSorted++)
{
 int nextElement = A[currentSorted];
 int compareI = currentSorted-1;
 while ((compareI > 0) && (A[compareI] > nextElement))
 {
 A]compareI] = A[compareI-1];
 compareI--;
 }
 A[compareI] = nextElement;
}

}

e) Analysis

Outer loop is O(n) = n; Inner Loop will, on average, be O(n) =n/2
Nested loops multiply so O(n) = n2

3. Bubble - already done in Programming in Java course

4. Shell Sort - Donald Shell 1958

a) Example using NumDiv = 2 (i.e. cutting the array in divisions of 2)

Nterms = 8

8 7 3 5 2 9 1 0
 Insertion sort circles then the boxes
 Then subdivide the array into NumDiv=4 parts
2 7 1 0 8 9 3 5
 Insertion sort circles then boxes

 Then subdivide the array into NumDiv=8 parts

1 0 2 5 3 7 8 9

 Insertion sort the circles

0 1 2 3 5 7 8 9

b) General Algorithm

numDiv = 3;

 p = nbrTerms / numDiv; // divide array into p “parts”

 1)in a loop for J = 1 to p // scan through the items in single part
 Insertion Sort (A[J], A[p + J], A [2p + J], etc.)

// insertion sort every “part-th” number

 2) numDiv = 3 * numDiv; // make more divisions
 3) p = Nbrterms / NumDiv; // there are fewer #’s in each “part”

 4) Repeat 1) while numDiv > nbrTerms // there are more than 1 # in each part

c) Ergo
J =|1 2 3… p |(p+1)(p+2)… |(2p+1) (2p+2)…| p = Nbrterms/NumDiv = #s in each
“part”
A Ο Ο Ο

| part |

in p = parts sorts, first insertion sort the Ο's
 A[1], A[p + 1], A[2p + 1], A[3p + 1], etc.
then insertion sort the 's
 A[2], A[p + 2], A[2p + 2], etc.
etc.

then divide A into 3x as many parts and repeat the process

d) This is more efficient because members out of order are moved much farther initially
than a simple insertion sort. The optimal value for numDiv turns out to be 3.452...

 part

A

place place + part place + 2 part place + part(pos – 1)

A part 1 part 2 Part 3 . . . part n subarray

Find size of part

0.0

a) diagram

b) Code
public boolean shellSort(int [] a, int target)
{

}

for (place = 0; place
< part; place++)

part = int ((part – 1) / 3)

placed = false

j = place + part* (pos-1)

while ((!placed)
&& (j > place))

a[j] < a[j +
part]

placed = true switch (a[j], a[j-part])

j = j - part

for (pos = 2; pos <
nbrparts; pos++)

nbrparts = int (nbrterms / part)

part = 3 * part +1

while (part >= 0)

part * 3 + 1
< nbrterms/3

part = 1

5. Quicksort - C.A.R. Hoare 1962

a) diagram

b) Approach (÷ and conquer)

Since for most sorts # of terms => time2

 2x as many elements => 4x as long
 10x as man\y elements => 100x as long
or

2 sets of half => 2(1/4 as long) = ½ as long
4 sets of 4ths => 4(1/16 as long) = ¼ as long

 etc.

c) Algorithm

Pick some element (to put in middle--easy to pick "first" element to put in middle)
put all larger above it
and all smaller below it
repeat the process on each half

Using 2 functions

Partition
QuickSort

NOTE: make sure you chose your variable names carefully! (i.e. does a variable refer to
an element of the array or an index/pointer)

d) Code

 public void quickSort (int A[]) {quicksort(A,0,A.length);}

 private void quicksort (int A[maxsize],
 int frontIndex,
 int backIndex)
 {
 int middleIndex;

 if (frontIndex < backIndex)
 {

 middle = partition (A, frontIndex, backIndex) ;
 Quicksort (A, frontIndex, middleIndex - 1) ;
 Quicksort (A, middleIndex + 1, backIndex);

 } // End if

 } // End Fcn Quicksort

 private int partition (int A[maxsize],
 int frontIndex ,

 int backIndex)

 {
 int pivotElement ;
 int leftIndex, rightIndex ;

 pivotElement = A[frontIndex] ;
 leftIndex = frontIndex ;
 rightIndex = backIndex + 1 ;

 do
 {

 // Move Left over until a value >= to Pivot is found
 do
 leftIndex++ ;
 while ((A[leftIndex] < pivotElement) && (leftIndex < rightIndex)) ;

 // Move Right over until a value <= to Pivot is found
 do
 rightIndex-- ;
 while (A[rightIndex] > pivotElement) ;

 if (leftIndex < rightIndex)
 Switch (A[leftIndex], A[rightIndex]) ;
 }
 while (leftIndex < rightIndex) ;

 // put the pivotElement at frontIndex in correct place and return its position
 Switch (A[frontIndex], A[rightIndex]) ;
 return rightIndex ;

 } // End Fcn Partition

e) Analysis

6. MergeSort – similar to Quicksort but in reverse order

a) diagram
614735928

61473 5928

614 73 59 28

61 4 7 3 5 9 2 8

6 1 4 7 3 5 9 2 8

now merge

16 4 7 3 5 9 2 8

146 37 59 82

13467 2589

123456789

b) Approach

1. Divide the array into two halves (perfect halves)
2. Continue dividing each half into further halves until down to 1 element
3. Merge each of 2 elements and put into one part in order
4. Continue merging “halves” into wholes in order until re-constructing original array in

order

c) Algorithm

 mergeSort()
 if (nElements < 2) then stop
 else
 if (nElements > 1)
 mergeSort the left half
 mergeSort the right half
 merge the two halves

 How to merge two halves given parameters: arrayA, lowIndex, highIndex

 1. make a copy of arrayA and call it arrayB
 2. initilize a Acounter = lowIndex
 3. calculate the middleIndex = (lowIndex + highIndex) / 2
 4. initialize leftIndex = lowIndex; rightIndex = middleIndex
 5. while (leftIndex < middleIndex) && (rightIndex < highIndex)

 if (B[leftIndex] > B[rightIndex] then
 A[Acounter] = B[rightIndex] // put smaller into A
 rightIndex++ // move right one over
 Else
 A[Acounter] = B[leftIndex] // put smaller into A
 LeftIndex++ // move left one over
 Acounter++ // increment the A counter
 6. if (leftIndex = middleIndex) // left side is finished
 Copy rest of right side of B into A
 Else // right side is finished
 Copy rest of left side of B into A

.

d) Code
public boolean mergeSort(int [] a, int target)
{
}

e) Analysis

7. HeapSort - combination of arrays and trees

a) diagram

b) Approach
1.

c) Algorithm
1.

d) Code
public boolean heapSort(int [] a, int target)
{

}

e) Analysis

