
I. Algorithms 

A. Intro to Analysis - Big-Oh 
Basically, algorithm analysis is the amount of time any program or algorithm should be expected to take for any 
given size of input.  It is based on the number of elements, n, that must be "processed".  For example, in order to 
Bubble sort an array of 10 elements, the algorithm (bubble sort) must "scan through" all 10 elements and put the 
largest at the end.  This takes at least 10 "calculations". This process must be repeated for 10 times (bubbling up each 
biggest number).  Therefore there is a at least a total of 10 * 10 = 100 "calculations" to be done.  If the array is 100 
elements, it would take 100*100 = 10000 calculations.  If there are n elements, it would take n2 calculations.  This is 
"Big-Oh" of the Bubble Sort algorithm, written O(n) = n2. 
 
Common Big-Oh functions for various algorithms are: 
a) O(n) = c,    O(1) constant  (Algorithm:  finding the nth element of an array takes only 1 calculation) 
b) O(n) = log (n) logarithmic (Algorithm:  searching using the binary search) 
c) O(n) = n  linear  (Algorithm:  searching through each element of an array) 
d) O(n) = n * log (n) N log N (Algorithm:  sorting using quicksort) 
e) O(n) = n2  quadratic (Algorithm:  Bubble sort) 
f) O(n) = n3  cubic  
g) O(n) = 2n  exponential (worst = very slow) 
 
 
 examples of cubic, quadratic, NlogN, linear, logarithmic, and constant 
  

  cubic quadratic     NlogN 

 
   

[time]  

        linear 

 

 

    [n] -->    logrithmic and constant 

1. Rules for calculating Big-Oh 
a. Coefficients and constants are not needed. 

a. O(n) = 3n+5   should just be O(n) = n 
b. Throw away any "lower order terms" 

a. O(n) = n3 + n2  should just be O(n) = n3 
c. Always assume n is large enough to be bigger than any constant 

a. if one algorithm takes 10000 calculations (O(n) = c) and another algorithm 
is O(n) = n,  we can assume the 2nd algorithm is "slower" because we will 
assume n is much larger than 10000. 

d. for Loops tend to generate O(n) = n but while loops are more tricky 
a. nested for loops (i.e. loop within loop) will multiply O(n)'s 
b. nested statements will multiply O(n) with outer statement's O(n) 
c. consecutive loops do not multiply, they add.  Therefore, O(n) is equal to the 

larger of the two loop's O(n). 



e. any time we "cut in half" the size of the array or data structure, the Big-Oh tends to 
be logarithmic i.e. O(n) = log(n) 

f. Big-Oh is an approximation and tends to be "worst-case" scenario which may not 
happen that often in actual use.  It is useful for "large n" only. 

 
For a true understanding of what this implies consider this table 
 
 n  Log2(n)  n Log2(n)       n2      n3     2n

      ----  ------  --------       ----       ----        ---- 
 1    0     1         1       1      2 
 2    1     2         4       8      4 
 4    2     8        16           64     16 
 8    3    24        64       512    256 
 16    4    64       256      4096   65536 
 32    5   160      1024     32768     2147483648 
  
 256    8  2048     65536  16777216   Oh My Gosh 
 
 1 million   20  20 Million  1 Trillion  1 Trillion Millions  Forget It 
 
ex. linear searrch binary search quicksort  bubble sort  weather simulartions  population simulations 
 
 Notes  
 

1)  The  Oh My Gosh  would take approximately 12 weeks on a current machine . 
 
  2)  For 1 Million member array - 
   The Bubble sort would take 50,000 times as long as the Quicksort . 
 
 

B. Counter 
for (int j = 0; j < 100; j++) 
 System.out.println(j);   Analysis:  O(n) = n 

C. Accumulation 
int sum = 0; 
for (int j = 0; j < 100; j++) 

   sum += j;    // sum = 0+1+2+3+...+99+100 
         Analysis:  O(n) = n 



D. Swap       Analysis:  O(n) = c 

1. simple - local variables, local scope 
int temp = x; 
x = y; 
y = temp;  

2. method on field variables 
public void swap() 
{ 

int temp   = this.x; 
    this.x = this.y; 
    this.y = temp; 

} 

3. method call to swap local variables - naive attempt...won't work 
public void localSwap() 
{ 

int x = 5, y = 6;  // local variables 
swap2(x,y);   // works???  ...not possible 

} 

4. swap method on primitive array 
public void swap(int a[], int index1, int index2) 
{ 

int temp  = a[index1]; 
a[index1] = a[index2]; 
a[index2] = temp; 

}  

5. swap method on ArrayList (or List) 
public void swap(List a, int index1, int index2) 
{ 

Object temp = a.getAt(index1); 
a.set(index1, a.getAt(index2)); 
a.set(index2, temp); 

}    



E. Search  

1. Linear Search - no assumptions other than can check for equality [  == or equals()  ] 

a) Approach 
Start at the beginning and check each element one by one to see if the target is an 
element of the array 

b) Algorithm 
for (j = 0 to j < length of the array, j++) 
 if (target == a[j]) then found target and return 
after loop is done -- haven't found target so return false 

c) Code 
public boolean searchPrimitiveArray(int [] a, int target) 
{ 

for (int j = 0; j < a.length; j++) 
  if a[j] == target then return true; 

return false; 
   } 
 

public boolean searchObjectArray(ArrayList a, Object target) 
{ 

for (int j = 0; j < a.size(); j++) 
  if a.getAt(j).equals(target) then return true; 

return false; 
   } 

d) Analysis:  each takes one loop through each element of the array so  O(n) = n  

 
 



 

2. Binary Search - assume the data structure is sorted in ascending order 

a) diagram 
leftIndex middleIndex rightIndex

0 1 2 3 4 5 6 7 8 9

-3 -1 5 7 22 27 80 101 120 130 a) target = 27
b) target = 6  

b) Approach 
1. find middle element of array.   
2. if middle element is target, then return true 
3. if target is not at middle then it may be in either first half of array or 2nd half of array 

3a. if in first half, then "cut" array into the "lower half" and repeat steps 1 - 3 on 
only lower half 
3b. if in 2nd half, then "cut" array into "upper half" and repeat steps 1 - 3 on only 
upper half 

c) Algorithm 
1. need leftIndex, rightIndex, and middleIndex  
2. while ((haven't found target ) && (not finished cutting array in half)) 

2a. if (middle element == target) return true 
2b. if (target < middle element) then move rightIndex down to middle  
2c. else move leftIndex up to middle  
2d. recalculate middleIndex 

 
    Issues: 
     1. need to keep track of whether target is found .... boolean found = false 
     2. how to calculate middleIndex  ... middle = first + last / 2    !!!! logic error 
                   middle = (first + last) / 2 
     3. Boundary Conditions: 

a. how to know when we are done cutting array in half? (target not in 
array) ---> when leftIndex > rightIndex 
b. why don't we want to move leftIndex up to middleIndex???? 
 ---> leftIndex = middleIndex + 1  // so don't have an infinite loop 

d) Code 
public boolean binarySearchPrimitives(int [] a, int target) 
{ 
 int left = 0, right = a.length, middle = (left+right)/2; 
 boolean found = false; 

while ((!found) && (left <= right)) 
{ 
 if (a[middle] == target) 
  found = true;  // or return true ???? 
 else 
  if (target < a[middle]) 
   right = middle - 1; 
  else 
   left = middle + 1; 
 middle = (left + right) / 2; 
} 
return found; 

} 



e) Analysis          Running Total 
1 statement      1     1 
1 statement      1    2 
loop (if not found, cut array in half) --->    log2(n) !!!!    2+     log2(n)    
 1/2 if statement      0.5      
  1 statement      1 2+0.5log2(n) 
 1/2 else      0.5   
  1 if statement       .5 
   1 statement 
  1 else statement    .5 
   1 statement      2+(1)log2(n) 
 1 statement      1  2+(2)log2(n) 
1 statement      1   3+(2)log2(n) 
 
         O(n) = log2(n) 
 
WHY log2(n) !!!!    
 
Example:  suppose n = 16, the important question becomes   
“how many times will the body of loop be executed?” 
 
If n = 16, then we may need to divide it into two “halves” repeatedly 
 

0 15
1st level

0 7
2nd level

0 3
3rd level

0 1
4th level  

 
1. The number of levels will determine how many times the 

loop body must be executed. 
2. 2# of levels  = 24 = 16 = n 
3. solving for the “# of levels” by taking log2  of both sides 

gives:  
 
log2 (2# of levels) = # of levels = log2 (16) = log2 (n) 

 
What would happen if we could divide the array into 3rds rather than halves? 
Answer:  the log would be base 3 rather than base 2 (i.e. log3   ) 



 

F. Divisibility (modulus) 

1. Greatest Common Factors of two integers, x and y. 

a) Approach  -- try out on actual numbers.  Let x = 54 and y = 24 GCF = ???  (6) 
1. Start with a one of the numbers (24) and test to see if it is a divisor of BOTH numbers.  If it is, then done 
2. Else check next number smaller (23) and test to see if it is divisor of BOTH numbers.  If it is, then done 
3. Repeat process until down to 1 (which must be a divisor of both numbers) 

b) Algorithm 
for (int j = x; j > 1; j--) 

if (j is divisor of x) and (j is divisor of y) then return j 
return 1; 
 

    Issues: 
     1. how do we tell if "j is divisor of x"?   ---> (x % j) == 0 

c) Code 
public int greatestCommonFactor (int x, int y) 
{ for (int j = x; j > 1; j--) 
  if ((x%j)==0) && ((y%j == 0)) return j; 

return 1; 
    } 

d) Analysis 
one for loop that goes from n down to 1.  Therefore O(n) = n 

2. Least Common Multiple of two integers, x and y. 

a) Approach  -- try out on actual numbers.  Let x = 54 and y = 24 LCM = ???  (216 = 2x2x2x3x3x3) 
1. start with one of the numbers  
2. generate and check every multiple to see if  y is a divisor of the multiple. 

b) Algorithm 

1. int possibleLCM = x; 
   2. loop until done 
    2a. if ( possibleLCM  %  y = = 0) then return possibleLCM 
    2b. update possibleLCM; 
 

Issues: 
     1. when are we "done"?  ---> when possibleLCM => x*y 

2. how do we update possibleLCM?  - --> possibleLCM += x; 
3. what kind of loop (for or while)?  ---> while is more flexible 

c) Code 
public int leastCommonMultiple (int x, int y) 
{ 

int possibleLCM = x; 
while (possibleLCM < x * y) 

 { 
 if ((possibleLCM%y) == 0) return j; 
 possibleLCM += x; 
} 
return x*y; 

    } 

d) Analysis 
one while loop whose worst case is x*y or n*m or n*n --> O(n) = n2   
        best case is O(n) = 1  (find the LCM right away) 



G. Sorts (assume the data structures are “comparable”) 
Purpose:  Most computers are used for sorting and searching for data.   
Examples:  Phone book, databases for credit card records, scheduling, SSN & tax forms? 
Big Problem:  The Internet suffers from a lack of comprehensive way to sort and search through all the 
data in a "reasonable amount of time" -- Big-Oh analysis.   XML might help in this regard.   Does 
Google do a good job???? 

1.  Selection Sort 

a) diagram 
 
scan through to find largest  (15 at index 2)  
  0 1 2 3 4 5 6       
  7 15 -2 6 3 15 11       
swap              
  0 1 2 3 4 5 6       
  7 11 -2 6 3 15 15       
               
scan through on shortened array (15 at index 5) 
swap with itself           
  0 1 2 3 4 5 6       
  7 11 -2 6 3 15 15       
               
scan through on shortened array (11 at index 1) 
  0 1 2 3 4 5 6       
  7 3 -2 6 11 15 15       
swap              
               
scan through on shortened array (7 at index 0) 
  0 1 2 3 4 5 6       
  6 3 -2 7 11 15 15       
swap              
               
scan through on shortened array (6 at index 0) 
  0 1 2 3 4 5 6       
  -2 3 6 7 11 15 15       
swap              
 

b) Approach 
1. Scan through entire array and select the largest element. 
2. Put this element in last slot and "shorten" array by one element 
3. Repeat step 1 on "shortened" array. 

 

c) Algorithm 
 
{Precondition:  We have a List/Array of "comparable" objects called "A[]" of size "n"} 
{Postcondition:  The entire List/Array is sorted in "ascending" order} 

1. Do steps a & b for endOfArray = n - 1 down to 1    // shorten the array each pass 
a. Scan through "shortened" array and record the largest element, maxi and its location, maxIndex. 
b. Swap maxi and last element of shortened array (i.e. A[maxIndex] and A[endOfArray] 

 



d) Code 
 
public boolean selectionSort(Comparable A[]) 
{ 

for (int endOfArray = A.size(); endOfArray > 0; endOfArray--) 
{ 
 int max = A[0]; // start max at first element 
 int maxIndex = 0; 
 for (int i = 0; i < endOfArray; i++)  
  if (A[i] > max) {max = A[i]; maxIndex = i} 
 swap(A,maxIndex,endOfArray); 
} 

} 

e) Analysis 
Ignoring the "individual" statements (O(n) = c). We can focus on the loops. 
Two loops:  outer loop is O(n) = n and inner loop is O(n) = n/2 (on average) 
Since nested, multiply to get O(n) = n(n/2) = n2   

  



2. Insertion Sort 
 

a) General Method –  
Like putting cards in order 
i.e. assuming all the cards already picked are in order, pick up next card, determine where it fits in, 
insert it 
           new item to be inserted 

b) Example 
 0 1 2 3 4 5 6  
A -8 0 5 17 -2 21 4 ... 

 
   in order      (move over)  pos
      move each over     4 

   insert where it belongs 

 

a) diagram 

  0 1 2 3 4 5 6       
  10 17 3 5 -2 16 3       
               
arraysize = 1           
  10             
               
arraysize = 2           
  10 17   move 17 into place    
               
arraysize = 3           
  3 10 17  move 3 into place    
               
arraysize = 4           
  3 5 10 17  move 5 into place    
               
arraysize = 5           
  -2 3 5 10 17  move -2 into place  
               
arraysize = 6           
  -2 3 5 10 16 17  move 16 into place 
               
arraysize = 7           
  -2 3 3 5 10 16 17  move 3 into place 

b) Approach 
1. Assume the first element in array is sorted. 
2. Add each element by assuming the previous elements are sorted. 

a. When adding the next element, it will be at the "end" of the partially sorted array. 
b. temporarily store this next element. Move consecutive prior elements to the right until the "next element" can be inserted 

into its "proper spot" 
3. Repeat step 2 until all the elements have been "inserted" into their correct order.  

c) Algorithm 
 

 {Precondition:  We have a List/Array of "comparable" objects called "A[]" of size "n"} 
 {Postcondition:  The entire List/Array is sorted in "ascending" order} 

1. for currentSorted = 1 to n    // scan through the entire array to insert each element 
a. Set nextElement = A[currentSorted]  
b. compareIndex = currentSorted - 1 
c. while (compareIndex > 0  &&  A[compareIndex] > nextElement) 

i. A[compareIndex]  = A[compareIndex-1]  // move each "bigger" element to the right 
ii. decrease compareIndex by one 

d. insert nextElement into A[compareIndex] 



 
 
for (Pos = 1; Pos < Nbrterms, Pos++) // for each item to be inserted 
  { 
     Temp = A[Pos];    // hold new number temporarily 
     J = Pos – 1;    // look at the # right before it 
     while (J >= 0 && (A[J] > Temp)) // while # not in right slot 
       { 
          A[J+1] = A[J];   // copy # in slot to right 
          J--;     // move down array 
       } 
     A[J+1] = Temp;    // put new # in correct slot 
  } 
 

d) Code 
public boolean insertionSort(Comparable A[]) 
{ 

for (int currentSorted = 1; currentSorted < A.size(); currentSorted++) 
{ 
 int nextElement = A[currentSorted]; 
 int compareI = currentSorted-1; 
 while ((compareI > 0) && (A[compareI] > nextElement)) 
 { 
  A]compareI] = A[compareI-1]; 
  compareI--; 
 } 
 A[compareI] = nextElement; 
} 

} 

e) Analysis 
 
Outer loop is O(n) = n;   Inner Loop will, on average, be O(n) =n/2  
Nested loops multiply so O(n) = n2



3. Bubble - already done in Programming in Java course 
 

4. Shell Sort -   Donald Shell 1958 
 
 

a) Example using NumDiv = 2 (i.e. cutting the array in divisions of 2) 
 

Nterms = 8   
 
8 7 3 5 2 9 1 0 
        Insertion sort circles then the boxes 
     Then subdivide the array into NumDiv=4 parts 
2 7 1 0 8 9 3 5 
     Insertion sort circles then boxes 

       Then subdivide the array into NumDiv=8 parts 
 

   
1 0 2 5 3 7 8 9 

 
       Insertion sort the circles 
 

0 1 2 3 5 7 8 9 
 
b) General Algorithm 

 
numDiv = 3; 

   p = nbrTerms / numDiv;   // divide array into p “parts” 
        

 1)in a loop for J = 1 to p   // scan through the items in single part   
             Insertion Sort (A[J], A[p + J], A [2p + J], etc.)  

// insertion sort every “part-th” number 
        

 2) numDiv = 3 * numDiv;   // make more divisions 
  3) p = Nbrterms / NumDiv;   // there are fewer #’s in each “part” 
 
       4) Repeat 1) while numDiv > nbrTerms // there are more than 1 # in each part 

 
 

c) Ergo 
J =|1 2 3…   p  |(p+1)(p+2)…  |(2p+1) (2p+2)…| p = Nbrterms/NumDiv = #s in each 
“part” 
A Ο  Ο      Ο  

|  part  |     
   

in p = parts sorts, first insertion sort the Ο's 
   A[1], A[p + 1], A[2p + 1], A[3p + 1], etc. 
then insertion sort the   's 
   A[2], A[p + 2], A[2p + 2], etc. 
etc. 
 
then divide A into 3x as many parts and repeat the process 
 

d) This is more efficient because members out of order are moved much farther initially 
than a simple insertion sort.   The optimal value for numDiv turns out to be 3.452... 

 



 
                       part                                                                                                                

A                         
 
place        place + part        place + 2 part         place + part( pos – 1)     
 

A part 1 part 2 Part 3 . . . part n           subarray 
 

Find size of part 
 
 
 
 
0.0 
 
 

a) diagram 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 

b) Code 
public boolean shellSort(int [] a, int target) 
{ 
  
} 

 
 
 
 
 
 

for (place = 0; place 
< part; place++) 

part = int ((part – 1) / 3) 

placed = false 

j = place + part* (pos-1) 

while ((!placed) 
&& (j > place)) 

a[j] < a[j + 
part] 

placed = true switch (a[j], a[j-part]) 

j = j - part 

for (pos = 2; pos < 
nbrparts; pos++) 

nbrparts = int (nbrterms / part) 

part = 3 * part +1 

while (part >= 0) 

part * 3 + 1 
< nbrterms/3 

part = 1 

 
 
 
 



 

5.  Quicksort   -   C.A.R. Hoare 1962 
      

a) diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) Approach (÷ and conquer) 
 
Since for most sorts # of terms => time2

 
       2x as many elements => 4x as long 
     10x as man\y elements => 100x as long 
or 

2 sets of half => 2(1/4 as long) = ½ as long 
4 sets of 4ths => 4(1/16 as long) = ¼ as long 

        etc. 

c) Algorithm 
 

Pick some element (to put in middle--easy to pick "first" element to put in middle) 
put all larger above it 
and all smaller below it 
repeat the process on each half 
 
Using 2 functions  

Partition 
QuickSort 

 
NOTE: make sure you chose your variable names carefully! (i.e. does a variable refer to 
an element of the array or an index/pointer) 



 

d) Code 
 
        public void quickSort (int A[]) {quicksort(A,0,A.length);} 
 

  private void   quicksort   (int A[maxsize], 
                              int frontIndex, 
                                    int backIndex) 
        { 
              int middleIndex; 
 
    if (frontIndex < backIndex) 
    { 

              middle = partition (A, frontIndex, backIndex) ; 
               Quicksort (A, frontIndex, middleIndex - 1) ; 
                   Quicksort (A, middleIndex + 1, backIndex); 
 
              } // End if 
 
   } // End Fcn Quicksort 

 
 

 
  private int   partition   (int A[maxsize], 
                             int frontIndex , 

                               int backIndex) 
 
        { 
              int pivotElement ; 
              int leftIndex, rightIndex ; 
 
              pivotElement = A[frontIndex] ; 
    leftIndex    = frontIndex ; 
    rightIndex   = backIndex + 1 ; 
 
    do 
              { 
 
      //  Move Left over until a value >= to Pivot is found 
      do 
       leftIndex++ ; 
                while ((A[leftIndex]  < pivotElement) && (leftIndex < rightIndex)) ; 
 

   //  Move Right over until a value <=  to Pivot is found 
   do 
    rightIndex-- ; 
   while (A[rightIndex] > pivotElement) ; 

 
                     if (leftIndex < rightIndex) 
                 Switch (A[leftIndex], A[rightIndex]) ; 
         } 
    while (leftIndex < rightIndex) ; 
 
    // put the pivotElement at frontIndex in correct place and return its position 
              Switch (A[frontIndex], A[rightIndex]) ; 
              return rightIndex ; 
 
           } // End Fcn Partition 

 

e) Analysis 
 



6.  MergeSort – similar to Quicksort but in reverse order 

a) diagram 
614735928 

 
61473  5928 

 
614  73    59  28 

 
61  4  7 3   5 9  2 8 

 
6  1  4  7 3   5 9  2 8 

 
now merge 

16 4   7 3   5 9  2 8 
 

146  37   59   82 
 

13467   2589 
 

123456789 

b) Approach 
 
1. Divide the array into two halves (perfect halves) 
2. Continue dividing each half into further halves until down to 1 element 
3. Merge each of 2 elements and put into one part in order 
4. Continue merging “halves” into wholes in order until re-constructing original array in 

order 

c) Algorithm 
 
 mergeSort() 
  if (nElements < 2) then stop 
  else 
   if (nElements > 1) 
    mergeSort the left half 
    mergeSort the right half 
    merge the two halves 
 
 How to merge two halves given parameters:  arrayA, lowIndex, highIndex 
 
 1. make a copy of arrayA and call it arrayB 
 2. initilize a Acounter = lowIndex 
 3. calculate the middleIndex = (lowIndex + highIndex) / 2 
 4. initialize leftIndex = lowIndex;  rightIndex = middleIndex 
 5. while (leftIndex < middleIndex) && (rightIndex < highIndex) 

 if (B[leftIndex] > B[rightIndex] then  
   A[Acounter] = B[rightIndex]  // put smaller into A 
   rightIndex++    // move right one over 
  Else 
   A[Acounter] = B[leftIndex]  // put smaller into A 
   LeftIndex++     // move left one over 
  Acounter++      // increment the A counter 
 6. if (leftIndex = middleIndex)   // left side is finished 
  Copy rest of right side of B into A 
    Else       // right side is finished 
  Copy rest of left side of B into A      

.  

d) Code 
public boolean mergeSort(int [] a, int target) 
{ 
} 

e) Analysis 
 



7.  HeapSort - combination of arrays and trees 

a) diagram 
 
 
 
 
 
 
 

b) Approach 
1.  

c) Algorithm 
1.  

d) Code 
public boolean heapSort(int [] a, int target) 
{ 

  
} 

e) Analysis 
 

 


