
III. Data Structures

A. Motivation:

1. Recall, most computers are used for:

a) Storage of data

b) Retrieval of data

c) Processing of data (algorithms)

2. We have discussed some "processing of data" in terms of searching and sorting but we must
address some issues that determine how we should organize and implement data into various
“structures”. Specifically, we recognize the two major issues of speed verus storage in different
situations:

a) Adding an element to the data structure --- in front/beginning or at back/end or in middle

b) Removing an element from the data structure--- in front/beginning or at back/end or in middle

c) Locating an element in the data structure --- sorted versus unsorted

d) Dealing with duplicate data

B. Standard Structures & Java Collections Framework (interfaces in java.util.*)

1. Overview

A) Standard Data Structures In Computer Science

1) arrays and matrices (linear or “bilinear” data structures)
2) linked lists (usually linear)

a. stacks
b. queues
c. double
d. circular

3) trees (nonlinear data structure)
a. generic
b. binary
c. decision & searching

4) heaps
a. combination of arrays and trees to take advantage of benefits of both structures
b. aka PriorityQueues

5) maps
a. aka tables, dictionaries
b. generalizaton of an array using a (key,value) pair rather than (index,value) pair

B) General Concepts and Useful Details for Data Structures and Java Collections
1) hashing – the process of converting data into a key or index to locate the data in a structure

a. example: To store the names of students in a String array, convert the characters into integers and add
the resulting values into one integer. This “total integer” could be used as an index to store and
retrieve each name.

b. public int hashCode(String name)
{ int total = 0;

for (int i = 0; i < name.length; i++)
total += convertToInt(name.getAt(i)); // this converts a character into a value

return total; // where A=1, B=2, C=3,....
 }

 public store(String name)
 { String [] nameArray = new String[100]; // 100 slots to hold names
 String nameTest = “Bob”;
 int index = hashCode(nameTest); // index is now “Bob” as an integer = 2+15+2 =19
 nameArray[index] = nameTest // Bob is now stored in slot 19
 }

c. pros – data itself is used to “locate” and “retrieve” itself
d. cons – can have collisions if data is “similar”... what would happen if nameTest was “BBo”?
e. Java uses a hashCode() method to store objects in memory... could a “collision” occur for “similar”

objects?...Yes but extremely unlikely since the hashCode() method for Objects is very sophisticated.

2) iteration – used instead of an integer index when “moving” or “traversing” each element of a data
structure...

a. for arrays we use:
for (int i = 0; i < myArray.length; i++)

Object data = myArray[i];

b. for collections we can use:
Iterator i = anyDataStructure.iterator(); LOOK AT C:/j2sdk1.4/src

 while (i.hasNext()) //see if there is more data
 Object data = i.next(); //get the element

c. or using for-each looping with Generics
 for (String o: anyDataStructure) //automatically loops through
 System.out.println(o); //data and gets String

d. searching for an item in a data structure using iterators:

public boolean search(Collection c, Object o)
{
 Iterator i = c.iterator(); // Collections have method that returns an iterator on it
 while (!found) && (i.hasNext()) // while not found and there is a next element
 if (o.equals(i.next())) // check if object is equal to this element
 return true; // Note: i.next() returns current object and moves
 return false;
} // iterator to next element in Collection.

i. Iterator Interface –
 - boolean hasNext() // returns true if there is another element, false otherwise
 - Object next() // returns the next element and moves iterator to that element
 - void remove() // deletes current element...most difficult to define.

ii. ListIterator class // same as Iterator but is bidirectional

iii. Notes
1. Iterators by their very nature linearizes any data structure it traverses.
2. May have more than 1 iterator on a data structure but only ONE my be used to modify

e. searching for an item using for-each and Generics

public boolean search(Collection<String> c, String o)
{
 for (String n : c)
 if (n.equals(o)) return true;
 return false;
}

3) AutoBoxing Lecture (Java5—jre1.5)
Why:
 It is a hassle to convert or cast between primitive types and their wrapper classes. This is especially true
when using JFC collections or data structures (ArrayLists, Maps, etc.) The compiler will do this casting for us. It is
especially useful when combined with Generics.

Example using the pre-Java5 way:

//instantiate an array of “number” Objects
ArrayList numbers = new ArrayList();

Integer xInt = new Integer(13); //instantiate an Integer object;
numbers.add(xInt); //add the Integer to the ArrayList
...
xInt = (Integers)numbers.get(0); //get Object then cast it back to Integer
int z = y.intValue(); //get the value (13) from the Integer

Example using the Java5 AutoBoxing way:

//instantiate an array of Integers using generics
ArrayList<Integer> numbers = new ArrayList<Integer>(); //declaration using Generics

int x = 13; //create a primitive variable;
numbers.add(x); //this “autoboxes” the int to an Integer then
... // adds the Integer object to the array
int z = numbers.get(0); //gets an Object from array slot 0 and then
 // the JRE “unboxes” the Integer to an int

Notes:
1. Use Autoboxing/Unboxing only when there is an “impedance mismatch” between reference types and

primitives. Usually this happens when you have to put numerical values into a collection.
2. It is not appropriate to use autoboxing and unboxing for scientific computing, or other performance-sensitive

numerical code since the autoboxing/unboxing requires a fair amount of computational complexity on the
JRE.

3. An Integer is not a substitute for an int; autoboxing and unboxing blur the distinction between primitive
types and reference types, but they do not eliminate it.

4. If the Integer returns “null” then the JRE throws a “NullPointerException” error
The == operator will automatically detect & use comparisons between two reference types (Objects) and will return
true only if the two references are the same object. However, the JRE will use == operator with “Unboxing” when
comparing primitive types and their corresponding wrapper classes.

C) Java API Collections Implementation of the above Data Structures

1) Diagrams
Collection<E>

Set<E> List<E>
(nonlinear organization) (linear organization)

SortedSet<E> LinkedList<E> HashSet<E> ArrayList<E>

TreeSet<K,V>

Iterator<E>
Map<K,V>

ListIterator<E>

SortedMap<K,V> HashMap<K,V>

TreeMap<K,V>

2) Definitions

 Linked Lists
a) An overview - Remember the idea is to NOT waste memory . But large programs invariably need
 many variable names, a problem previously handled by arrays, i.e. many memlocs accessed by
 one name . After all can one realistically keep track of only so many names at a time . The
 answer is of course to come up with the a Linked List of pointers/references with only one name .

The picture -

 Start Data1 Data2 Data3 Datan NULL

 . . .

 ListNode

b) Pointers/references require 2 memlocs per piece of data, so we tie these together
 into one structure which we will refer to as a ListNode. Thus the definition would be -

public class ListNode // Java API uses an inner class called “Entry” that is a
{ // double linked list. This is not easy
 private Object value;
 private ListNode next; // self reference!!!! “begging for recursion”

 public ListNode (Object initValue, ListNode initNext)

{value = initValue; next = initNext;}

 public Object getValue() {return value;}
 public ListNode getNext() {return next;}
 public void setValue (Object newValue) {value = newValue;}
 public void setNext (ListNode newNext) {next = newNext;}
}

c) Remember at this stage there is no ListNode object, much less a Linked List,

so, we meed another class—called LinkedList—that will create ListNodes as needed.

public class LinkedList
{
 ListNode start = new ListNode() ; // private or public??? initialized here or constuctor??

 Allocates one Node and
 places the address/reference of this structure in Start .

 Thus the picture is now -

 start

 where start is the reference (the address of the ListNode) and
 start.getValue() is the object at that address , a structure, so
 start.getNext() is the reference to the 2nd ListNode (or null if it doesn’t exist)
 start.getValue().getName() is the is accessing the name field of the object in the ListNode

d) To use any of these Linked Lists we clearly need methods to -

 i) push() a new ListNode with the appropriate Object onto the List
 ii) pop() a ListNode from the List and retrive the object in the ListNode .

 start null

 And before either of these we need the following method-

 iii) To test for an empty list use the method-

 boolean isEmpty()
 {
 boolean emptyList = false;
 if (start = null) emptyList = true ;
 return emptyList ;
 }

iv) To add a ListNode onto the front of the LinkedList
public void push(Object o)
{
 // create a new ListNode with new object and pointing to front of List
 ListNode temp = new ListNode(o,start);

 // point the start of the List to the new ListNode
 start = temp;
}

 Question: what happens to temp????? Ans: local variables are out of scope

v) To remove a ListNode from the front of the Linked List
public Object pop()
{
 // make sure we aren’t popping from an empty list
 if (isEmpty) return null;

// create a temporary reference to the Object in front of List
 Object temp = start.getValue();

// point start to 2nd ListNode in the List
 start = start.getNext();
 return temp;
}

 Question: what happens to the ListNode at the front???? Ans: garbage collected

public class LinkedList // technically, this is an implementation of a Stack
{
 private ListNode start;

 public LinkedList()
 { start = null; }

boolean isEmpty()

 {
 boolean emptyList = false;
 if (start = null) emptyList = true ;
 return emptyList ;
 }

public void push(Object o)
{
 ListNode temp = new ListNode(o,start);

 start = temp;
}

public Object pop()
{
 if (isEmpty) return null;
 Object temp = start.getValue();
 start = start.getNext();
 return temp;
}

 // other methods needed
}

e) Java API and Methods to be tested on the AP Exam

List Interface- sequence of elements, non-unique (not necessarily sorted)

 List ArrayList LinkedList
 boolean add(Object) void add(int index, Object) void addFirst(Object)
 int size() void remove(int index) void addLast(Object)
 Object get(int index) ... Object removeFirst()
 Object set(int index, Object) (along with all Object removeLast()
 Iterator iterator() List methods) void itr.add()
 ListIterator listIterator() void itr.remove()

(1) Notes for ArrayList and LinkedList Classes:

(a) Most-used generic data structure. Good for "first approach" to a problem because it offers a balance between
generalization and optimization.

(b) Easy manipulation. ArrayList is a combination of arrays (integer index) and Lists (Iterators).

(c) Pros - "organized" for faster insertion and deletion than Collections; O(n) = 1 once an element has been
found as compared with arrays .

(d) Cons - not always the fastest organizations, non-sorted searching is linear, O(n) = n using Iterator or index
unless List is Ordered in some way.

(e) Use ArrayList unless using frequent addition of elements to front--O(1) vs O(n)—or to “ends” (i.e. queue,
stack)

(2) ArrayList

(a) used to store "ranked" data since--like arrays--uses integer indexes

(b) has the benefits of Lists (i.e. quick element addition and deletion)--hence better than arrays

f) There a 2 general categories of Linked Lists :

 i) Simple (aka “Linear” or “Singly”) L.L.s which a the kind pictured above -

a) A Stack - where components are PUSHed onto and POPed from the Front of the list .
This is a Last On First Out list (LIFO List) .

 Like a Dixie Cup dispenser .

b) A Queue - where components are PUSHed onto one end but POPed from the other end .

 A FIFO List .
 Like a waiting line at a theater .

 Requiring a pointer to both the Front and the Back of the list .

c) An Ordered List.
Here the Data is in some given order, such as ascending by Idnum or Alpha by name
Thus may be PUSHed onto and POPed from anywhere in the list .

ii) Complex L.L.s because the problem with Singly Linked Lists is that they may be traversed
 in only one direction since the arrows only point one direction . This is a major
 problem for large lists since when retrieving data one must start at the Front, so -

a) Double Linked - where one can transverse the list in both directions .

 Back

 Front NULL
 NULL

b) Circular List - while one cannot traverse backward, one can always continue
onward from ones present location, without the necessity of starting over -

 Start

 c) Trees - multiply Linked Lists
 i.e. a list whose nodes (components) may point to more than one other node.

 Root

 This is called a binary tree since each node can point to 2 others.
 The connotation of a tree is of course when viewed in a flipped position.

Special Types of Linear (Simple) Linked Lists

b) Stacks - Last In, First Out (LIFO) Linked List

(1) Diagrams

(2) Applications

(a) modelling "plates" in a restaurant

(b) postfix math notation used in HP calculators...makes it easy to do math operations on
calculator and is actually how our brain "evaluates" arithmetic 3*(4+5) in infix notation is 3 4 5
+ * in postfix (also called reverse polish notation (RPN))

(c) recursion functions work on a "stack" basis

(3) methods - besides being a Collection & List

(a) boolean empty() - should have been isEmpty() but original design problem

(b) Object push(Object o) - adds an element to end of stack

(c) Object pop() - takes element off the top of the stack

(d) Object peek() - gives top element and leaves element on the top of stack

(e) int search() - returns position of element on stack... -1 if not

 found...top position = 1!!!!

c) Queues - First In, First Out (FIFO) -- no Java interface or class...must build one from Collections

(1) Diagrams

(2) Applications

(a) Simulation of people in lines at a movie theatre.

(b) Simulation of demands by clients for too few services (Internet), printers, etc.)

(3) methods needed - since NO Java Implementation we must create following interface
public inteface Queue extends Collection
{

boolean isEmpty();
Object dequeue() // remove element from front of queue
Object enqueue() // add an element to end of queue
Object getBack() // return the element on the back of the queue
Object getFront() // return the element on the front of the queue

}

// to follow Java Collections Framework, should implement Queue interface as an Abstract class
public AbstractQueue extends AbstractCollection implements Queue
{
 public abstract Object dequeue();
 public abstract Object enqueue(Object o);
 public abstract Object getBack();
 public abstract Object getFront();

 // other abstract methods to be declared are:
 public abstract Iterator iterator();
 public abstract int size();

 // other concrete methods to be defined are:

public boolean equals(Object o) {...}
public int hashCode() {...}

/* other concrete methods inherited from Object and AbstractCollections are
/* boolean addAll(Collection c);
/* boolean contains (Object c)
/* void clear()
/* boolean isEmpty()
/* boolean remove(Object o)
/* String toString() ... and others
*/

Binary Trees – the Java API diagrams given before are examples of trees
(a Linked List with nodes (components) which point/refer to multiple nodes)

a) Dfn : A Tree is a LinkedList with 2 properties -
 i) Any node may point to 1 or more other nodes.
 ii) One node pointed to by “root” has the properties
 a) It is unique.
 b) No node points to it.
 c) All nodes may be reached from it by only one path. (no circling back up->graphs!)

b) A picture - root

 A Tree called, “root”, with 9 nodes.

 1

 2 3

 4 5 6 7

 8 9

c) Terminology -

 i) Nodes 2 and 3 are Children of node 1 .

 ii) Node 2 is the Parent of nodes 4, 5 and 6 .

 iii) Nodes 4, 5, 6, 8 and 9 are Leaves (i.e. have no children) .

 iv) The Level or Order of a node is the # of (super) parents + 1 .
 Ergo node 5 is of order 3 .

d) Due to the complexity of implementation trees are invariable binary (i.e. 2 children possible.)

The picture - root

 A

 B C

 E F G

 H I

iii) A node and all of its (sub) children are called a subtree.
 Which leads to an alternate definition for a tree -

 Dfn : A Binary Tree is a set of connected nodes each pointing
 0, 1, or 2 subtrees.

 iv) In any “Ordered Binary Tree” the data is always stored so that for any node

 either a) leftchild.getData() < parent.getData() < rightchildgetData()

 Note : this implies there are no duplications of data— a TreeSet not a TreeMap

 or b) leftchild.getData() <= parent.getData() <= rightchildgetData()

 Note : this implies there may be duplications of data— a TreeMap not a TreeSet

 v) In any traverse, the Leftchild is visited before the Rightchild (except 4) below).
 This leads to 4+1 methods of Traversing the Data (each name comes from where

 “Parent” is visited) -

 1) Preorder PLR
 2) Inorder LPR
 3) Postorder LRP
 4) ReverseInOrder RPL

 +
 1) LevelOrder --- where each “level” is from top to bottom and from
 left to right

 And the recursive function to implement the Inorder transverse for the class below -

 public void traverse_Inorder (TreeNode root)
 {
 if (!Empty())
 {
 traverse_Inorder (root.getLeft ());

 // use the Parent's Data (i.e. root.getData())

 traverse_Inorder (root.getRight ());
 } // End If
 } // End Transverse

 Note: the first 4 traversals can be “easily” implemented using recursion. The

“LevelOrder” is usually implemented by loops/iterations.

 vi) Various Structures of Binary Trees
a. Full Binary Tree – all the tree’s leaves are at the same level and every “interior”

node has two children (“best possible” - most efficient use of space & time)
b. Complete Binary Tree – full tree or “almost full” (i.e. maybe missing some

nodes on bottom row, right side)

a a a

b c b c b c

 Full (ideal) Complete (ok) neither (poor implementation)
d e g h d e g d g h

e) Basic implementation of Tree

public class TreeNode // Java API uses an inner class called “Entry” that is a
{ // is a Map (TreeMap)
 private Object value;
 private TreeNode left, right;

 public TreeNode (Object initValue, TreeNode initLeft, TreeNode initRight)

{ value = initValue; left = initLeft; right=initRight;}

 public Object getValue() { return value;}
 public TreeNode getLeft() {return left;}
 public TreeNode getRight() {return right;}
 public void setValue (Object newValue) {value = newValue;}
 public void setLeft (TreeNode newLeft) {left = newLeft;}
 public void setRight (TreeNode newRight) {right = newRight;}
}

public class Tree // Binary Search Tree...must have comparable objects
{
 private TreeNode myRoot;

 public Tree()
 {
 myRoot = null;
 }

 // need a generic implementation to add an object to the tree.
 private TreeNode addValue(TreeNode r, Comparable cmp)
 {

// if the TreeNode is empty then create a new Node at the root, r
 // else check if the object is smaller than the current object at TreeNode, r
 // if smaller then recursively call “addValue” to attach the object to the

// left side of current TreeNode, r
 // if bigger then recursively call “addValue” to attach object to right side

if (r == null)
r = new TreeNode(cmp, null, null);

else
if (cmp.compareTo((Comparable) (r.getValue())) < 0)

 r.setLeft(addValue(r.getLeft(), cmp));
else

 r.setRight(addValue(r.getRight(), cmp));
 return r; // reference to this TreeNode (needed to keep track of the real root)

 }

 // the public interface to add an object to the tree
 public void add(Comparable cmp)
 {

 myRoot = addVal(myRoot, cmp);
 }
... // see the Data Structures directory for implementation for AP Test
}

Questions:

How would you implement a “search()” method using recursion?
How would you implement a “height()” method?
How would you implement a “toString()” method?
How would you implement a “remove(Object)” method?

Answers:
 public int height()
 {
 return height(myRoot);
 }

 private int height(TreeNode root)
 {
 if (root == null) return 0;
 return 1 + Math.max(height(root.getLeft()), height(root.getRight()));
 }

 public String toString()
 {
 return toString(myRoot);
 }

 private String toString(TreeNode root)
 {
 if (root == null) return "";
 else

return "(" + toString(root.getLeft()) +
 " " + root.getValue() +
 " " + toString(root.getRight()) + ")";

 }

 // Does the following work on binary trees as well as binary search Trees????
 private boolean search(Comparable c, TreeNode r)
 {
 if (r == null) return null;
 else
 if (c.equals((Comparable)r.getValue()))

return true;
 else

return (search(c, r.getLeft()) || search(c. r.getRight()))
 }

 public boolean search(Comparable c)
 {
 return search(c, root);
 }

f) The function to remove the object from the Tree, then close and reorder the remaining nodes.

 F

 C H

 A E K

 D I

case 1: deleting node that has at most 1 child (i.e. delete K)

 attach node below (i.e. node I) to parent (Node H) of deleted Node

 F

 C H

 A E I

 D

case 2: deleting node that has 2 children (i.e. delete Node C from original)

 step 1: find smallest element to right of node (“D”) to be deleted & its parent (“E”)
 step 2: unlink this smallest element (has max 1 right branch) from parent
 step 3: attach right side of smallest element to left of parent
 “E”.setLeft(“D”.getRight())
 (NOTE: if parent is to be deleted, attach right side of
 of smallest to right side of parent)
 step 4: let this smallest link take the place of deleted node
 by attaching left & right sides of old deleted node to
 left & right sides of smallest node
 step 5: delete node

 F F

 C H D H

 A E K A E I

 D I

 Null ???

boolean remove(Comparable data)

// postcondition: return true if data removed from tree
// restructures tree to maintain order
// return false if data not found

{
// search to find parent of node containing data
// if not found then return false, otherwise

// get reference to node to be deleted
// and reference to parent node above node to be deleted

// case 1: node to be deleted has at most 1 child
// a) check if right side or left
 b) connect parent reference to single child node below node to be deleted
// case 2: node to be deleted has 2 children

 // step 1: find smallest element to right of node to be deleted & its parent
 // step 2: unlink this smallest element (has max 1 right branch) from parent
 // step 3: attach right side of smallest element to left of parent
 // (if parent is to be deleted, attach right side of
 // of smallest to right side of parent)
 // step 4: let this smallest link take the place of deleted node
 // by attaching left & right sides of old deleted node to
 // left & right sides of smallest node
 // step 5: delete node
}

3) Java API and AP Exam Details

a) arrays

(1) already discussed and used

(2) easy implementation

(3) used for "ranked" data since using integer indexes (not necessarily all in order)

(4) fast searching, O(n) = n

(5) slow addition/deletion O(n) = n since inserting or deleting at first position requires moving all data.

b) matrices (2 dimensional arrays) - an array of arrays

(1) int [] [] [] m = new int [3][2][5]; // 3x2x5

(2) int [] [] n = { {1,2,3}, null, {3,3,3}, {0,1,1}} // 4x3

Recall, the Java API has the following structure:

Collection<E>

Set<E> List<E>
(nonlinear organization) (linear organization)

SortedSet<E> LinkedList<E> HashSet<E> ArrayList<E>

TreeSet<K,V>

Iterator<E>
Map<K,V>

ListIterator<E>

SortedMap<K,V> HashMap<K,V>

TreeMap<K,V>

c) Collections (aka "A Bag", "multiset") - generic group of elements (repeats allowed, no
order) – technically an interface for other interfaces

A

(1) Drawing Bag b

2

A

(2) Notes:

(a) Useful for situations when the data/objects are "unknown" (i.e. in Adventure Games, this would be used to
implement a "Bag of Holding" which can hold any type and number of items without order.

(b) Pros - most general type of grouping

(c) Cons - not efficient in terms of storage (duplicates?) or retrieval (no organization)

(3) methods for a Collection
(a) boolean add(Object o)
(b) boolean addAll(Collection c)
(c) void clear()
(d) boolean contains (Object o)
(e) boolean containsAll(Collection c)
(f) boolean equals(Object o)
(g) int hashCode()
(h) boolean isEmpty()
(i) boolean remove(Object o)
(j) boolean removeAll(Collection c)
(k) boolean retainAll(Collection c)
(l) int size();
(m) Object[] toArray()
(n) Object[] toArray(Object[] o)
(o) Iterator iterator()

d) Set - unordered collection of unique elements (no repeats) this is an Interface!

(1) Drawing

HashSet - unsorted Set TreeSet – a Set that is sorted into a Tree (comparable)
 (uses HashMap instance object) (uses a TreeMap instance)
 O(1) for add, remove, contains, size O(logN) for add, remove, contains & search
 O(n) for search

 HashCode() array index Data value stored in array[index]
 0

hashCode(“B”) = 1 “B”
 2
 3

hashCode(“BC”) = 4 “BC”
hashCode(“E”) = ? ?? where to store this?? ---> lecture later

(2) Notes:

(a) Two sets are equal if and only if both have the exact same elements regardless of implementation... (==
means that they both have same hashCode())

(b) Pros – both efficient storage and easy programming. TreeSet for ordered items, HashSet is faster otherwise

(c) Cons – no duplicates...user defined Sets are difficult because of overriding equals() and hashCode() methods

(3) Set Interface methods
(a) boolean add(Object o)
(b) int size()
(c) boolean contains (Object o)
(d) Iterator iterator()
(e) boolean remove(Object o)
(f) ...

methods for HashSet (no order) TreeSet (ascending order)
 void remove(Object) Comparator comparator()
 HashSet() Object first()
 HashSet(Collection) SortedSet headSet(Object) // a set with elements < Object
 SortedSet tailSet(Object) // a set with elements >= Object

e) Map (aka Dictionary, Table, & Associative Array) - collection of (key,value) pairs.

HashMap - unsorted Map TreeMap – a Map that is organized into a Tree (Comparator or Comparable)

(1) Notes:
(a) Keys and Values can be any Objects
(b) Keys must be unique but Values must not necessarily be unique (if unique values then use Sets!)
(c) Arrays are simple Maps with the keys being the integer indexes.
(d) Map interface allows us to:

(i) insert key/value pair into map
(ii) retrieve any value given its key
(iii) test if a given key is in the map
(iv) iterate over the keys, values or key/value pairs
(v) don’t remove while iterating except via i.remove() method

HashSet

(unsorted, unique data)
TreeSet

(sorted, unique data)

O()
Hash

O()
Tree

HashMap
(unsorted, unique keys, duplicate data)

TreeMap
(sorted, unique keys, duplicate data)

O()
Hash

O()
Tree

boolean contains(Object) O() O() boolean containsKey(Object k) O() O()
boolean addValue(Object) O() O() Object put(Object k, Object v) O() O()
boolean remove(Object) O() O() Object remove (Object k) O() O()
 Object get(Object k) O() O()
 boolean containsValue(Object v) O() O()
Iterator iterator() O() O()
 void putAll(Map m) O() O()
 Collection values() O() O()
 Set keySet() O() O()
 Object lastKey() O()
 SortedMap headMap(Object k) O()
 SortedMap subMap(Object fromK, Object toK) O()
 SortedMap tailMap(Object fromKey) O()

(2) General uses for Maps
(a) Anywhere an array or tree could be used since the arrays just use integer keys, more complicated to program
(b) Example – Frequency of word use in a report

public class WordFreq
{
 private Map m;

 public WordFreq()

{
m = new HashMap();
loadMap(m);
System.out.println(m); // print the values in the map

 }

 public void loadMap(Map m)
 {
 < code to open the report file called “inFile” >

 while (<there are still words in “inFile” >)
 {
 String work = inFile.readWord(); // readWord() reads one word in...may have to tokenize it

 Integer i = (Integer) m.get(word); // get the value associated with the key word

 if (i == null) // new word
 m.put(word, new Integer(1)); // put new word in the map since we’ve seen it once
 else
 m.put(word, new Integer(i.intValue()+1)); // add 1 to the number of times we’ve seen it
 }
 }
}

Hashing

Suppose we wish to store a record for each student in a school with 700 students.
We will use an array to contain the info comprised of say:

public class Student
{
 private String name;
 private long ssnum ;

//and any other appropiate info & methods ;
}

Questions:
 1) Should we store the information by SSN or Name? Ans: SSN as may have duplicate names.

2) should we use an array or tree? Ans: array as SSN may not be “in order”

Since an array must be subscripted by an integer, the logical choice would of course be the SSN.
 i.e. 371-525-6042 a 9 digit integer without the dashes.

So we have the possible values 0 - 999999999 = 1 Billion possibilities .
This is not tenable, i.e. to allocate 1 Billion “blocks” of memory to contain these large chunks of
data is a tremendous waste of resources, after all we will only use 700 of these “blocks”.

But, (because we look slightly ahead) to allow for possible expansion we will allocate
 static final maxSize = 1000 ; // A global for the schools size
 Block student [maxSize] ; // whatever a Block is composed of ? (Student class)

So how do we decide which student to put in which Block using their SSN ? One way of doing this is using just the
last 3 digits of the SSN . The possible values range from 0 – 999 (i.e. 1,000 possibilities)
.
Now a function to return this subscript which we will refer to as hashKey

public int hashKey (int ssnum)
{
 int last3Digits ;

 last3Digits = ssnum % maxSize ; // Where maxSize is a static final field

 return last3Digits ;
}

Why a method? Because the process might become more complicated in the future .
For instance, someone might decide to store via the Student's Name - so how does one
turn a name into an integer ? How about -

public int hashKey (String name)
{
 int theKey ;
 int j ;

 for (j = 0; j < name.getSize(); j++)
 theKey = theKey + (int)name.getAt(j);// This adds the ASCII (Unicode) values of the chars
 theKey = theKey % maxSize ; // This sum might be too large
 return theKey ;
}

Hashing

Ergo
 Suppose we have the declaration float student [10]; // A school, 10 Students Max
 Store the following GPA’s via their last digit of SSN-
GPA’s: 3.97 2.54 0.01 3.40 1.59 1.58 2.00
SSN’s: 397-68-3156, 398-98-1583, 458-96-0207, 227-64-4669, -2511, -3720, -2673

 0 1 2 3 4 5 6 7 8 9
Student| 1.58 | 1.59 | | 2.54 | | | 3.97 | 0.01 | | 3.40 |

Either method can lead to a problem called - Collision i.e. 2 Blocks with the same hashKey() value .

One method of handling collisions when they occur is look at the next consecutive location
if it is empty use this location otherwise look at the next, etc. until a empty location is found .
For this reason the size of the array should be larger than the number of Blocks to be stored .
In fact, the optimal size needed to prevent as many collisions as possible is a little less
than 2 times the number of Blocks . But, first we need to initialize the array so that one can
check to determine if the location is empty .

 //Global
 private static final Empty = -1 ; // Some value that cannot equal the Hashkey

 public void init_array (Block student[maxSize])
 {
 int J ;

 for (J = 0; J < maxSize; J++)
 student[J] = Empty ;

 }

Hashing
Now the function to store in the next open slot

 public void hashStore (int student [maxSize];
 int item ;
 boolean placeFound) ;
 {
 int startKey ;
 int tryKey ;

 placeFound = False ;
 startKey = hashKey(Item) ;
 tryKey = startKey;

 do
 {
 if (student[tryKey] = Empty)
 {
 A[tryKey] = Item ;
 placeFound = True ;
 } // end if

 else
 {
 tryKey ++ ;
 tryKey = tryKey % maxSize; // Why ? What ?
 } // end else

 } // end while

 while (!placeFound) & (tryKey != startKey)

 } // end fcn Hashstore

And to find a Student one can essentially use an adaptation of the above called hashRetrieve()

Other methods of collision avoidance also exist since “linear probing” is easy to program but poor performance.
Quadratic Probing is another technique...see text.

<<<<<<<<<<<<<
DEMONSTRATION OF HASHSET AND HASHMAP in Folder ..>examples>data structures>Sets & Maps

1. take Student.java and Course.java get the Course application to run;
2. do as tree – won't run – must implement comparable

Teaching Notes on Student.java and Course.java:

(1) classes are immutable. No modifiers
(2) toString(): write this because otherwise System.out.printlong will only print the

address (i.e. hashCode())
(3) Note the toString() method calls the accessors. Don't use the private instance fields

– if you ever update the data structure, have to modify the whole class????
(4) Do we need a compareTo()? Yes if we want to add students in a tree.
(5) If we use a hash table then need equals() and hashCode() methods!!!!
(6) equals() method must be used correctly!!! (i.e. use overriding—boolean equals(Object o)--

rather than overloading— boolean equals(OtherClass o)
(7) If you add something to a HashMap, you must use a hashCode.

>>>>>>>>>>>>>>>>>>>

HEAPS - combining trees with arrays
(this is where “Full” and “Complete” binary trees are important)

All memory can be considered to be linear -

 i.e. in line and addressed thusly -

 X
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

 Essentially, RAM is one huge, long array.
 And we can treat any part of this array as a Binary Tree in the following way -
 X
 A 1 NOTE: Numbers are same as array index!
 Letters are the Data elements in a Node!
 B 2 C 3

 D E F G
 4 5 6 7

I will refer to each Letter as a “node” for convenience.
 The array, X, is composed of nodes somewhere in memory. And the name X is a
 reference to the first node, thus cannot be changed (it is the same as the root, not root node, of the tree).

 1 2 3 4 5 6 7
 A B C D E F G ...

 X CurrentIndex

 We need to adjust the subscripting so that the first node has subscript 1.
 If CurrentIndex is an adjusted subscript of some node, then that node is accessed by
 X[CurrentIndex];

and the adjusted subscripts of Current's children become
 LeftchildIndex = 2 * CurrentIndex;
 RightchildIndex = 2 * CurrentIndex + 1;

 So, for the node C -
 CurrentIndex = 3
 Leftchild = 2*3 = 6 node F , and
 Rightchild = 2*3 + 1 = 7 node G.

A) Definition: a Heap is a Binary Tree with 2 properties

 1) The parent's data is greater than either child's (Thus NonOrdered).
 2) The tree must be either

a) full - all nonleafs have 2 children
 A

 B C

 D E F G
 or

b) complete - full thru the next to the last level and

 last level has no gaps except on right side of level.
 A

 complete B C NOT complete

 D

 B) When we implement the Heap as the array, X,
 Property 2) is automatically implemented, and
 Property 1) the largest data must be stored in the first node
 so the adjusted subscript of the Maxdata = 1.

 C)mapping heaps with arrays: NOTE: 0th place is not used for programming convenience

array X
 0 1 2 3 4 5 6 7 8
 55 21 34 3 8 5 8 1

 heap X 55 1

 21 2 34 3

 3 8 5 8
 4 5 6 7
 1 NOTE: heaps CAN store duplicate data!
 8

D) heap class
class heap

 {
 public static int MaxSize = 1024; // reserve a maximum array/heap size

private int heapMaxSize; // maximum array size
 private int numNodes; // current number of nodes in heap
 private Object[] buffer // array to hold heap

 public Heap(maxSize); // constructor, pass default maxSize
 public boolean isEmpty(); // tell if heap is empty
 public boolean isFull(); // array is full
 public boolean insert(Object newData) // insert a new node
 public boolean remove(Object badData); // delete a node
 };

E) "easy" public member functions

 public Heap(int mS) {heapMaxSize = mS; buffer=new Object[mS], numNodes=0;}
 public boolean isEmpty() { return (numNodes == 0);}
 public boolean isFull() { return (numNodes == heapMaxSize);}

F) inserting a node into heap:
Two considerations:

1. preserve order and
2. preserve "completeness"

Approach:

1. attach new node to "end" of heap
2. move new node to correct spot by repeatatively

swapping with each smaller parents until new node reaches final spot

 Visualization:

array X

 0 1 2 3 4 5 6 7 8
 55 21 34 3 8 5 8 1

 heap X 55 1

 21 2 34 3

 3 8 5 8
 4 5 6 7
 1
 8

 Step 1: attach to end of heap (insert new node, say 36)

array X
 0 1 2 3 4 5 6 7 8 9
 55 21 34 3 8 5 8 1 36

 heap X 55 1

 21 2 34 3

 3 8 5 8
 4 5 6 7
 1 36
 8 9

Step 2: move new node up by swapping with successive smaller parents
 Note: for the array, swap index "9" with "9/2 = 4" index

array X
 0 1 2 3 4 5 6 7 8 9
 55 21 34 36 8 5 8 1 3

 heap X 55 1

 21 2 34 3

 36 8 5 8
 4 5 6 7
 1 3
 8 9

 Note: now swap index "4" with "4/2 = 2" index

array X
 0 1 2 3 4 5 6 7 8 9
 55 36 34 21 8 5 8 1 3

 heap X 55 1

 36 2 34 3

 21 8 5 8
 4 5 6 7
 1 3
 8 9

// member function for insert into heap
 boolean insert(Object newNode)
 {
 // postcondition: return true if d is inserted into heap

 otherwise return false

if (isFull())
return false;

numNodes++; // use next slot in array

// starting at last node, go from node i (last node) to
// its parent node (pi) and swap with any parent smaller

int i = numNodes;
int pi;

while (i > 1)
{

ip = i/2;
if (d <= buffer[ip]) // if data is at right location
 break; // skip out of loop
buffer[i] = buffer[ip]; // move parent down
i = ip;

 }
 buffer[i] = d; // insert new data into correct spot
 return true;

}

G) deleting a node from top of heap -- (may use a modified version to delete any node)

Two considerations:
1. preserve order and
2. preserve "completeness"

Approach:

1. remove node from root
2. move last node to root
3. move root down by swapping with larger nodes below it until in place

 Visualization:

 Original heap array

array X
 0 1 2 3 4 5 6 7 8
 55 21 34 3 8 5 8 1

 heap X 55 1

 21 2 34 3

 3 8 5 8
 4 5 6 7
 1
 8

Steps 1 & 2: remove node (55) from root & move last node (1) to root
array X

 0 1 2 3 4 5 6 7
 1 21 34 3 8 5 8

 heap X 1 1

 21 2 34 3

 3 8 5 8
 4 5 6 7

Step 3: move "small" root node down by swapping with largest node below it
 move down 1 level

array X
 0 1 2 3 4 5 6 7
 34 21 1 3 8 5 8

 heap X 34 1

 21 2 1 3

 3 8 5 8
 4 5 6 7
 move down 2nd level

array X
 0 1 2 3 4 5 6 7
 34 21 1 3 8 5 8

 heap X 34 1

 21 2 8 3

 3 8 5 1
 4 5 6 7

// member function to delete root node of heap
 boolean remove()
 {
 // postcondition: returns true if largest element (root node) is deleted
 // false otherwise

 if (isEmpty()) return false;

 // get top element
 d = buffer[1];

 // starting from vacant root (ip), go from parent node (ip) to its
 // largest child (i) and, as long as ip has a larger child than last

// element of heap, move child up

int ip = 1; // root
int i = 2; // start at left child

while (i <= numNodes)
{
 // set i to right child (i+1) if it exists and is larger
 if ((i < numNodes) && (buffer[i] < buffer[i+1])) i++;

 // if this last node is bigger than largest child then get out of loop
 if (buffer[i] <= buffer[numNodes] break;

 buffer[ip] = buffer[i]; // move large child up
 ip = i; // look at node down one level
 i *= 2; // i now is at left child
} // while

// move last node to the correct slot in heap
if (numNodes > 1)
 buffer[ip] = buffer[numNodes];
numNodes--; // one less node

 return true; // deleted a node
}

Heap Sort – Time and Space Analysis

Step 1: Create the heap --> Time analysis is O(N), Space analysis has an array size of N = 9
 0 1 2 3 4 5 6 7 8 9
 55 21 34 3 8 5 17 1 2

 55 1

 21 2 34 3

 3 8 5 17
 4 5 6 7
 1 2
 8 9

Step 2: Find maximum at X[1] ---> O(1)
Step 3a: Remove maximum;
Step 3b: Put maximum in a new array at Y[h] then increase h++ --> O(1); Space analysis means double memory

 0 1 2 3 4 5 6 7 8 9
 21 34 3 8 5 17 1 2

 1 Y 55
 h= 1 2
 21 2 34 3

 3 8 5 17
 4 5 6 7
 1 2
 8 9

Step 3c: Re-heap ---> O(logN), no extra Space
 0 1 2 3 4 5 6 7 8
 34 21 17 3 8 5 2 1

 34 1 Y 55
 h= 1 2
 21 2 17 3

 3 8 5 2
 4 5 6 7
 1
 8

Step 4: Repeat step 3 until no elements in heap --> Step 3 is done N times
 0 1 2 3 4 5 6 7
 21 8 17 3 1 5 2

 21 1 Y 55 34
 h= 1 2
 8 2 17 3

 3 1 5 2
 4 5 6 7

Overall: Big-Oh is N times logN or O(NlogN) and space analysis means need 2 x amount of memory
 (Won’t need extra array if keeping track of “deleted” end element of original array)

f) Priority Queues (aka Ordered Linked Lists) – implemented as Heaps

1) The overview -

A) Definition : A Priority Queue is a Simple Linked List where the data
is ordered or “prioritized” or “ordered” in some fashion. – implemented as a Heap (ArrayList or Tree)

B) An example would be information stored for the IRS, which would necessarily
 be ordered by SS number.

 C) The picture of a Priority Queue. named Start -

 Start A B C D ... N NULL

 where A < B < C < ... < N

D) Since Java does not come with it’s own PriorityQueue class, we declare an interface
which will be tested on the AP Exam.

public interface PriorityQueue
{
 // postcondition: Returns true if the number of elements in priority queue is 0;
 // Otherwise, returns false
 boolean isEmpty();

 // postcondition: x has been added to the priority queue;
 Number of elements in the priority queue is increased by 1. //
 void add(Object x);

 // postcondition: The smallest item in the priority queue is removed and returned;
 // The number of elements in the priority queue is decreased by 1.
 // Throws an unchecked exception if the priority queue is empty
 Object removeMin();

 // postcondition: The smallest item in the priority queue is returned;
 // The priority queue is unchanged
 // Throws an unchecked exception if the priority queue is empty
 Object peekMin();
}

E) To use the interface, we create a “concrete class” using an ArrayList.

import java.util.*;

public class ArrayPriorityQueue implements PriorityQueue
{
 private List items; // not an ArrayList since more General and add() method is O(1) for
 // List interface as opposed to O(n) for ArrayList class

 public ArrayPriorityQueue()
 {
 items = new ArrayList(); // items is an ArrayList but can only use List interface methods!
 }

 public boolean isEmpty()
 {
 return (items.size() == 0);
 }

 public void add(Object x)
 {
 items.add(x); // Qst: What class has the “add()” method?

// Ans: Declared in List but defined in ArrayList.
 }

 public Object removeMin()
 {
 Object min = peekMin();
 items.remove(min);
 return min;
 }

 public Object peekMin()
 {
 int minIndex = 0;
 for (int i = 1; i < items.size(); i++) //...SEE LECTURE/DEMONSTRATION ON ITERATOR VS INDEXING
 {

 // Must cast "calling object" but do not cast the argument
 // ...the compareTo() method will do the casting...
 // If in doubt about whether the argument can be "Comparable" to the calling object,
 // ...encase in a "try" block and catch the "illegalClassCastException"

 // alternatively, we might try using Generics
 if (((Comparable) items.get(i)).compareTo(items.get(minIndex)) < 0)
 {
 minIndex = i;
 }
 }
 return items.get(minIndex);
 }

}

Iterator versus Indexing >>>>>>>>>>>>>> USE DEMONSTRATION PROGRAM

import java.util.*;

public class IteratorTest
{
 public IteratorTest()
 {
 ArrayList list = initialize();
 Integer ZERO = new Integer(0); // need a “0” object

 System.out.println("Original List");
 printArray(list);

 // This works and is the recommended way
 System.out.println("Iterator WHILE remove() of all ZEROS ");
 Iterator it = list.iterator();
 while (it.hasNext())
 if (ZERO.equals(it.next()))
 it.remove();
 printArray(list);

 // works but is awkward
 System.out.println("Iterator FOR with remove() of all ZEROS ");
 list = initialize();
 for (it = list.iterator(); it.hasNext();)
 if (ZERO.equals(it.next()))
 it.remove();
 printArray(list);

 // Won't work for "zeros that are sequential"...see initializer() method
 System.out.println("Indexed FOR with remove() of all ZEROES");
 list = initialize();
 for (int i = 0; i < list.size(); i++)
 if (ZERO.equals(list.get(i)))
 list.remove(i);
 printArray(list);

 // works since List moves deleted items to "decreasing" index
 System.out.println("Reversed Indexed FOR with remove() of all ZEROES");
 list = initialize();
 for (int i = list.size() - 1; i >= 0; i--)
 if (ZERO.equals(list.get(i)))
 list.remove(i);
 printArray(list);
 }

 public void printArray(List l)
 {
 System.out.println("");
 Iterator i = l.iterator();
 while (i.hasNext())
 System.out.print(" "+i.next());
 }

 public ArrayList initialize()
 {
 ArrayList l = new ArrayList();
 for (int i = 0; i<10; i++)
 {
 l.add(new Integer(i-5));
 if (i==5) l.add(new Integer(0)); // multiple sequential “0”s may cause problems
 }
 return l;
 }

 public static void main(String a[])
 { new IteratorTest(); }
}

